Archives of Neuroscience

Published by: Kowsar

Alginate-Based Hydrogel Containing Taurine-Loaded Chitosan Nanoparticles in Biomedical Application

Arash Goodarzi 1 , Mehdi Khanmohammadi 1 , Somayeh Ebrahimi-Barough 1 , Mahmoud Azami 1 , Amir Amani 2 , Alireza Baradaran-Rafii 3 , Nasrin Lotfi bakhshaiesh 1 , Armin Ai 4 , Ali Farzin 1 and Jafar Ai 1 , *
Authors Information
1 Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
2 Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
3 Department of Ophthalmology and Ophthalmic Research Center, Labbafinejad Medical Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
4 Department of Oral and Maxillofacial Surgery, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
Article information
  • Archives of Neuroscience: April 30, 2019, 6 (2); e86349
  • Published Online: April 22, 2019
  • Article Type: Research Article
  • Received: November 12, 2018
  • Accepted: November 28, 2018
  • DOI: 10.5812/ans.86349

To Cite: Goodarzi A, Khanmohammadi M, Ebrahimi-Barough S, Azami M , Amani A, et al. Alginate-Based Hydrogel Containing Taurine-Loaded Chitosan Nanoparticles in Biomedical Application, Arch Neurosci. 2019 ; 6(2):e86349. doi: 10.5812/ans.86349.

Copyright © 2019, Archives of Neuroscience. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Methods
3. Results and Discussion
4. Conclusions
  • 1. El-Sherbiny IM, Yacoub MH. Hydrogel scaffolds for tissue engineering: Progress and challenges. Glob Cardiol Sci Pract. 2013;2013(3):316-42. doi: 10.5339/gcsp.2013.38. [PubMed: 24689032]. [PubMed Central: PMC3963751].
  • 2. Caliari SR, Burdick JA. A practical guide to hydrogels for cell culture. Nat Methods. 2016;13(5):405-14. doi: 10.1038/nmeth.3839. [PubMed: 27123816]. [PubMed Central: PMC5800304].
  • 3. Gyles DA, Castro LD, Silva JOC, Ribeiro-Costa RM. A review of the designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur Polymer J. 2017;88:373-92. doi: 10.1016/j.eurpolymj.2017.01.027.
  • 4. Drury JL, Mooney DJ. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials. 2003;24(24):4337-51. doi: 10.1016/s0142-9612(03)00340-5.
  • 5. Tan WH, Takeuchi S. Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv Mater. 2007;19(18):2696-701. doi: 10.1002/adma.200700433.
  • 6. Wu SJ, Don TM, Lin CW, Mi FL. Delivery of berberine using chitosan/fucoidan-taurine conjugate nanoparticles for treatment of defective intestinal epithelial tight junction barrier. Mar Drugs. 2014;12(11):5677-97. doi: 10.3390/md12115677. [PubMed: 25421323]. [PubMed Central: PMC4245551].
  • 7. Uludag H, De Vos P, Tresco PA. Technology of mammalian cell encapsulation. Adv Drug Deliv Rev. 2000;42(1-2):29-64. doi: 10.1016/S0169-409X(00)00053-3. [PubMed: 10942814].
  • 8. Khanmohammadi M, Dastjerdi MB, Ai A, Ahmadi A, Godarzi A, Rahimi A, et al. Horseradish peroxidase-catalyzed hydrogelation for biomedical applications. Biomater Sci. 2018;6(6):1286-98. doi: 10.1039/c8bm00056e. [PubMed: 29714366].
  • 9. Sarker B, Rompf J, Silva R, Lang N, Detsch R, Kaschta J, et al. Alginate-based hydrogels with improved adhesive properties for cell encapsulation. Int J Biol Macromol. 2015;78:72-8. doi: 10.1016/j.ijbiomac.2015.03.061. [PubMed: 25847839].
  • 10. Khoshfetrat AB, Khanmohammadi M, Sakai S, Taya M. Enzymatically-gellable galactosylated chitosan: Hydrogel characteristics and hepatic cell behavior. Int J Biol Macromol. 2016;92:892-9. doi: 10.1016/j.ijbiomac.2016.08.003. [PubMed: 27496605].
  • 11. Berger J, Reist M, Mayer JM, Felt O, Gurny R. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm. 2004;57(1):35-52. doi: 10.1016/s0939-6411(03)00160-7.
  • 12. Salehi M, Naseri-Nosar M, Azami M, Nodooshan SJ, Arish J. Comparative study of poly(L-lactic acid) scaffolds coated with chitosan nanoparticles prepared via ultrasonication and ionic gelation techniques. Tissue Eng Regen Med. 2016;13(5):498-506. doi: 10.1007/s13770-016-9083-4. [PubMed: 30603431]. [PubMed Central: PMC6170840].
  • 13. Degim Z, Celebi N, Sayan H, Babul A, Erdogan D, Take G. An investigation on skin wound healing in mice with a taurine-chitosan gel formulation. Amino Acids. 2002;22(2):187-98. doi: 10.1007/s007260200007. [PubMed: 12395186].
  • 14. Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res. 2007;24(12):2198-206.
  • 15. Ebrahimi-Barough S, Kouchesfahani HM, Ai J, Massumi M. Differentiation of human endometrial stromal cells into oligodendrocyte progenitor cells (OPCs). J Mol Neurosci. 2013;51(2):265-73. doi: 10.1007/s12031-013-9957-z. [PubMed: 23338937].
  • 16. Katuwavila NP, Perera ADLC, Samarakoon SR, Soysa P, Karunaratne V, Amaratunga GAJ, et al. Chitosan-alginate nanoparticle system efficiently delivers doxorubicin to MCF-7 cells. J Nanomater. 2016;2016:1-12. doi: 10.1155/2016/3178904.
  • 17. Olmez SS, Korkusuz P, Bilgili H, Senel S. Chitosan and alginate scaffolds for bone tissue regeneration. Pharmazie. 2007;62(6):423-31. [PubMed: 17663189].
  • 18. Masuko T, Minami A, Iwasaki N, Majima T, Nishimura S, Lee YC. Thiolation of chitosan. Attachment of proteins via thioether formation. Biomacromolecules. 2005;6(2):880-4. doi: 10.1021/bm049352e. [PubMed: 15762654].
  • 19. Koyano T, Koshizaki N, Umehara H, Nagura M, Minoura N. Surface states of PVA/chitosan blended hydrogels. Polymer. 2000;41(12):4461-5. doi: 10.1016/S0032-3861(99)00675-8.
  • 20. Hassan R, Tirkistani F, Zaafarany I, Fawzy A, Khairy M, Iqbal S. Polymeric biomaterial hydrogels. I. Behavior of some ionotropic cross-linked metal-alginate hydrogels especially copper-alginate membranes in some organic solvents and buffer solutions. Adv Biosci Biotechnol. 2012;3(7):845-54. doi: 10.4236/abb.2012.37105.
  • 21. Sakai S, Khanmohammadi M, Khoshfetrat AB, Taya M. Horseradish peroxidase-catalyzed formation of hydrogels from chitosan and poly(vinyl alcohol) derivatives both possessing phenolic hydroxyl groups. Carbohydr Polym. 2014;111:404-9. doi: 10.1016/j.carbpol.2014.05.010. [PubMed: 25037368].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments