Archives of Neuroscience

Published by: Kowsar
Uncorrected Proof scheduled for 6 (Special Issue)

Magnetic Resonance Imaging Segmentation Techniques of Brain Tumors: A Review

Hamid A. Jalab 1 , * and Ali M. Hasan 2
Authors Information
1 Faculty of Computer Science and Information Technology, University of Malaya, Kuala Lumpur, Malaysia
2 College of Medicine, Al-Nahrain University, Baghdad, Iraq
Article information
  • Archives of Neuroscience: In Press (In Press); e84920
  • Published Online: January 19, 2019
  • Article Type: Review Article
  • Received: October 3, 2018
  • Revised: November 17, 2018
  • Accepted: December 12, 2018
  • DOI: 10.5812/ans.84920

To Cite: Jalab H A, Hasan A M. Magnetic Resonance Imaging Segmentation Techniques of Brain Tumors: A Review, Arch Neurosci. Online ahead of Print ; In Press(In Press):e84920. doi: 10.5812/ans.84920.

Abstract
Copyright © 2019, Archives of Neuroscience. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Context
2. Brain Tumors Segmentation
3. Conclusions
Acknowledgements
Footnotes
References
  • 1. Bankman IN. Handbook of medical image processing and analysis. 2th ed. Burlington: Elsevier/Academic Press; 2009.
  • 2. Birry RAK. Automated classification in digital images of osteogenic differentiated stem cells [dissertation]. University of Salford; 2013.
  • 3. Al-Waeli AMH. An automated system for the classification and segmentation of brain tumours in MRI images based on the modified grey level co-occurrence matrix [dissertation]. Salford, UK: University of Salford; 2017.
  • 4. Loizou CP. Ultrasound image analysis of the carotid artery [dissertation]. London, UK: Kingston University; 2005.
  • 5. Drevelegas A, Papanikolaou N. Imaging modalities in brain tumors. In: Antonios D, editor. Imaging of brain tumors with histological correlations. Springer Berlin Heidelberg; 2011. p. 13-33.
  • 6. Tonarelli L. Magnetic resonance imaging of brain tumor. 300. Enterprises for Continuing Education, Inc; 2013. p. 48116-300.
  • 7. Mechtler L. Neuroimaging in neuro-oncology. Neurol Clin. 2009;27(1):171-201. ix. doi: 10.1016/j.ncl.2008.09.015. [PubMed: 19055979].
  • 8. Strong M, Garces J, Vera J, Mathkour M, Emerson N, Ware ML. Brain tumors: Epidemiology and current trends in treatment. J Brain Tumor Neurooncol. 2015;1(1). doi: 10.4172/jbtn.1000102.
  • 9. Mortazavi D, Kouzani AZ, Soltanian-Zadeh H. Segmentation of multiple sclerosis lesions in MR images: A review. Neuroradiology. 2012;54(4):299-320. doi: 10.1007/s00234-011-0886-7. [PubMed: 21584674].
  • 10. Tantisatirapong S. Texture analysis of multimodal magnetic resonance images in support of diagnostic classification of childhood brain tumours [dissertation]. University of Birmingham, UK; 2015.
  • 11. Belkic D, Belkic K. Signal processing in magnetic resonance spectroscopy with biomedical applications. CRC Press; 2010.
  • 12. Hasan A, Meziane F, Aspin R, Jalab H. Segmentation of brain tumors in MRI images using three-dimensional active contour without edge. Symmetry. 2016;8(11):132. doi: 10.3390/sym8110132.
  • 13. Sanjuan A, Price CJ, Mancini L, Josse G, Grogan A, Yamamoto AK, et al. Automated identification of brain tumors from single MR images based on segmentation with refined patient-specific priors. Front Neurosci. 2013;7:241. doi: 10.3389/fnins.2013.00241. [PubMed: 24381535]. [PubMed Central: PMC3865426].
  • 14. Pantelis G. Computer assisted diagnosis of brain tumors based on statistical methods and pattern recognition techniques [dissertation]. University of Patras, Greece; 2010.
  • 15. Tohka J. Partial volume effect modeling for segmentation and tissue classification of brain magnetic resonance images: A review. World J Radiol. 2014;6(11):855-64. [PubMed: 25431640]. [PubMed Central: PMC4241492].
  • 16. Zhang Y, Brady JM, Smith SM. An HMRF-EM algorithm for partial volume segmentation of brain MRI FMRIB technical report TR01YZ1. Department of Engineering Science, Centre for Functional Magnetic Resonance Imaging of the Brain, Oxford University; 2001.
  • 17. Mohan G, Subashini MM. MRI based medical image analysis: Survey on brain tumor grade classification. Biomed Signal Proces. 2018;39:139-61. doi: 10.1016/j.bspc.2017.07.007.
  • 18. Palm DL, Xu C, Prince JL. A survey of current methods in medical image segmentation. Baltimore, USA: Technical report, Johns Hopkins University; 1998.
  • 19. Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging. 2015;34(10):1993-2024. doi: 10.1109/TMI.2014.2377694. [PubMed: 25494501]. [PubMed Central: PMC4833122].
  • 20. Gordillo N, Montseny E, Sobrevilla P. State of the art survey on MRI brain tumor segmentation. Magn Reson Imaging. 2013;31(8):1426-38. doi: 10.1016/j.mri.2013.05.002. [PubMed: 23790354].
  • 21. Petrou M. Texture in biomedical images. In: Deserno MT, editor. Biomedical image processing. Springer Berlin Heidelberg; 2010. p. 157-76. doi: 10.1007/978-3-642-15816-2_6.
  • 22. Dougherty G. Digital image processing for medical applications. Cambridge University Press; 2009.
  • 23. Naji SA, Zainuddin R, Jalab HA. Skin segmentation based on multi pixel color clustering models. Digit Signal Process. 2012;22(6):933-40. doi: 10.1016/j.dsp.2012.05.004.
  • 24. Alan H. W , Policarpo F. The computer image. the University of Michigan: Addison-Wesley; 1998.
  • 25. Jin L, Min L, Jianxin W, Fangxiang W, Tianming L, Yi P. A survey of MRI-based brain tumor segmentation methods. Tsinghua Sci Technol. 2014;19(6):578-95. doi: 10.1109/tst.2014.6961028.
  • 26. Russ JC. Image processing. Computer-assisted microscopy. Springer; 1990. p. 33-69.
  • 27. Wilson JN, Ritter GX. Handbook of computer vision algorithms in image algebra. CRC Press; 2000.
  • 28. Solomon C, Breckon T. Fundamentals of digital image processing: A practical approach with examples in matlab. John Wiley & Sons; 2011.
  • 29. Rogowska J. Chapter 5- Overview and fundamentals of medical image segmentation. In: Bankman IN, editor. Handbook of medical image processing and analysis. Elsevier/Academic Press; 2009.
  • 30. Mie S, Lakare S, Ming W, Kaufman A, Nakajima M. A gradient magnitude based region growing algorithm for accurate segmentation. Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101). Vancouver, BC, Canada, Canada. IEEE; 2000. p. 448-51.
  • 31. Jähne B. Digital image processing. 60th ed. Berlin: Springer; 2005.
  • 32. Sonka M, Hlavac V, Boyle R. Image processing, analysis, and machine vision. Cengage Learning; 2014.
  • 33. William K. Digital image processing. 3th ed. Canada: Wiley-Interscience; 2001. 656 p.
  • 34. Rousseau O. Geometrical modeling of the heart [dissertation]. Canada: University of Ottawa; 2009.
  • 35. Mikulka J, Gescheidtova E. An improved segmentation of brain tumor, edema and necrosis. Proceedings of Electromagnetics Research Symposium Proceedings,Taipei. 2013. p. 25-8.
  • 36. Despotovic I, Goossens B, Philips W. MRI segmentation of the human brain: Challenges, methods, and applications. Comput Math Methods Med. 2015;2015:450341. doi: 10.1155/2015/450341. [PubMed: 25945121]. [PubMed Central: PMC4402572].
  • 37. Loizou CP, Pantziaris M, Seimenis I, Pattichis CS. Brain MR image normalization in texture analysis of multiple sclerosis. 9th International Conference on Information Technology and Applications in Biomedicine, Larnaca. 2009. p. 1-5.
  • 38. Han J, Pei J, Kamber M. Data mining: Concepts and techniques. 3th ed. Elsevier Science; 2011.
  • 39. Larose DT. Discovering knowledge in data: An introduction to data mining. USA: John Wiley & Sons; 2005.
  • 40. Angulakshmi M, Lakshmi Priya GG. Automated brain tumour segmentation techniques: A review. Int J Imag Syst Tech. 2017;27(1):66-77. doi: 10.1002/ima.22211.
  • 41. Negnevitsky M. Artificial intelligence: A guide to intelligent systems. Addison-Wesley; 2005.
  • 42. Zhang G, Eddy Patuwo B, Y. Hu M. Forecasting with artificial neural networks. Int J Forecasting. 1998;14(1):35-62. doi: 10.1016/s0169-2070(97)00044-7.
  • 43. Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, et al. Brain tumor segmentation with Deep Neural Networks. Med Image Anal. 2017;35:18-31. doi: 10.1016/j.media.2016.05.004. [PubMed: 27310171].
  • 44. Hasan AM, Meziane F. Automated screening of MRI brain scanning using grey level statistics. Comput Electr Eng. 2016;53:276-91. doi: 10.1016/j.compeleceng.2016.03.008.
  • 45. Nabizadeh N, Kubat M. Brain tumors detection and segmentation in MR images: Gabor wavelet vs. statistical features. Comput Electr Eng. 2015;45:286-301. doi: 10.1016/j.compeleceng.2015.02.007.
  • 46. Bauer S, Nolte LP, Reyes M. Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer Berlin Heidelberg; 2011. p. 354-61.
  • 47. Guo D, Fridriksson J, Fillmore P, Rorden C, Yu H, Zheng K, et al. Automated lesion detection on MRI scans using combined unsupervised and supervised methods. BMC Med Imaging. 2015;15:50. doi: 10.1186/s12880-015-0092-x. [PubMed: 26518734]. [PubMed Central: PMC4628334].
  • 48. Kahali S, Adhikari SK, Sing JK. 3D MRI brain image segmentation: A two-stage framework. International Conference on Computational Intelligence, Communications, and Business Analytics. Springer; 2017. p. 323-35.
  • 49. Kalinić H. Atlas-based image segmentation: A survey. Universiy Zagreb. 2009.
  • 50. Nabizadeh N. Automated brain lesion detection and segmentation using magnetic resonance images. University of Miami, USA; 2015.
  • 51. Ibrahim RW, Hasan AM, Jalab HA. A new deformable model based on fractional Wright energy function for tumor segmentation of volumetric brain MRI scans. Comput Methods Programs Biomed. 2018;163:21-8. doi: 10.1016/j.cmpb.2018.05.031. [PubMed: 30119853].
  • 52. Sachdeva J, Kumar V, Gupta I, Khandelwal N, Ahuja CK. A package-SFERCB-“Segmentation, feature extraction, reduction and classification analysis by both SVM and ANN for brain tumors”. Appl Soft Comput. 2016;47:151-67. doi: 10.1016/j.asoc.2016.05.020.
  • 53. Soltaninejad M, Yang G, Lambrou T, Allinson N, Jones TL, Barrick TR, et al. Automated brain tumour detection and segmentation using superpixel-based extremely randomized trees in FLAIR MRI. Int J Comput Assist Radiol Surg. 2017;12(2):183-203. doi: 10.1007/s11548-016-1483-3. [PubMed: 27651330]. [PubMed Central: PMC5263212].
  • 54. Zhang J, Shen X, Zhuo T, Zhou H. Brain tumor segmentation based on refined fully convolutional neural networks with a hierarchical dice loss. Comput Vision Pattern Recog. 2017.
  • 55. De S, Bhattacharyya S, Dutta P. Automatic magnetic resonance image segmentation by fuzzy intercluster hostility index based genetic algorithm: An application. Appl Soft Comput. 2016;47:669-83. doi: 10.1016/j.asoc.2016.05.042.
  • 56. Lee M, Cho W, Kim S, Park S, Kim JH. Segmentation of interest region in medical volume images using geometric deformable model. Comput Biol Med. 2012;42(5):523-37. doi: 10.1016/j.compbiomed.2012.01.005. [PubMed: 22402196].
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .
Readers' Comments