Archives of Neuroscience

Published by: Kowsar

Differentiation of Periodontal Ligament Stem Cells Into Osteoblasts on Hybrid Alginate/ Polyvinyl Alcohol/ Hydroxyapatite Nanofibrous Scaffolds

Naghmeh Bahrami 1 , 2 , Mohammad Bayat 1 , 2 , ** , Armin Ai 3 , * , Mehdi Khanmohammadi 4 , Jafar Ai 4 , Akbar Ahmadi 5 , Majid Salehi 6 , Somayeh Ebrahimi-Barough 4 , Arash Goodarzi 4 , Roya Karimi 4 , Abdolreza Mohamadnia 7 and Azam Rahimi 4
Authors Information
1 Craniomaxillofacial Research Center, Tehran University of Medical Sciences, Tehran, Iran
2 Oral and Maxillofacial Surgery Department, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
3 Dentistry Faculty, Tehran University of Medical Sciences, Tehran, Iran
4 Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
5 School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
6 Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
7 Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
Corresponding Authors:
Article information
  • Archives of Neuroscience: October 2018, 5 (4); e74267
  • Published Online: July 21, 2018
  • Article Type: Research Article
  • Received: May 4, 2018
  • Accepted: May 16, 2018
  • DOI: 10.5812/ans.74267

To Cite: Bahrami N, Bayat M, Ai A, Khanmohammadi M, Ai J, et al. Differentiation of Periodontal Ligament Stem Cells Into Osteoblasts on Hybrid Alginate/ Polyvinyl Alcohol/ Hydroxyapatite Nanofibrous Scaffolds, Arch Neurosci. 2018 ; 5(4):e74267. doi: 10.5812/ans.74267.

Copyright © 2018, Archives of Neuroscience. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Methods
3. Results
4. Discussion
  • 1. Doshi J, Reneker DH. Electrospinning process and applications of electrospun fibers. J Electrostat. 1995;35(2-3):151-60. doi: 10.1016/0304-3886(95)00041-8.
  • 2. Chen S, Liu B, Carlson MA, Gombart AF, Reilly DA, Xie J. Recent advances in electrospun nanofibers for wound healing. Nanomedicine (Lond). 2017;12(11):1335-52. doi: 10.2217/nnm-2017-0017. [PubMed: 28520509].
  • 3. Samadian H, Salehi M, Farzamfar S, Vaez A, Ehterami A, Sahrapeyma H, et al. In vitro and in vivo evaluation of electrospun cellulose acetate/gelatin/hydroxyapatite nanocomposite mats for wound dressing applications. Artif Cells Nanomed Biotechnol. 2018:1-11. doi: 10.1080/21691401.2018.1439842. [PubMed: 29458271].
  • 4. Itoh H, Li Y, Chan KHK, Kotaki M. Morphology and mechanical properties of PVA nanofibers spun by free surface electrospinning. Polym Bull. 2016;73(10):2761-77.
  • 5. Ahire JJ, Robertson DD, van Reenen AJ, Dicks LMT. Surfactin-loaded polyvinyl alcohol (PVA) nanofibers alters adhesion of Listeria monocytogenes to polystyrene. Mater Sci Eng C Mater Biol Appl. 2017;77:27-33. doi: 10.1016/j.msec.2017.03.248. [PubMed: 28532029].
  • 6. Supaphol P, Chuangchote S. On the electrospinning of poly(vinyl alcohol) nanofiber mats: A revisit. J Appl Polym Sci. 2008;108(2):969-78. doi: 10.1002/app.27664.
  • 7. Hassiba AJ, El Zowalaty ME, Nasrallah GK, Webster TJ, Luyt AS, Abdullah AM, et al. Review of recent research on biomedical applications of electrospun polymer nanofibers for improved wound healing. Nanomedicine (Lond). 2016;11(6):715-37. doi: 10.2217/nnm.15.211. [PubMed: 26744905].
  • 8. Bahrami N, Malekolkottab F, Ebrahimi-Barough S, Alizadeh Tabari Z, Hamisi J, Kamyab A, et al. The effect of purmorphamine on differentiation of endometrial stem cells into osteoblast-like cells on collagen/hydroxyapatite scaffolds. Artif Cells Nanomed Biotechnol. 2017;45(7):1343-9. doi: 10.1080/21691401.2016.1236804. [PubMed: 27686538].
  • 9. Ge S, Zhao N, Wang L, Yu M, Liu H, Song A, et al. Bone repair by periodontal ligament stem cellseeded nanohydroxyapatite-chitosan scaffold. Int J Nanomedicine. 2012;7:5405-14. doi: 10.2147/IJN.S36714. [PubMed: 23091383]. [PubMed Central: PMC3474464].
  • 10. Song IS, Han YS, Lee JH, Um S, Kim HY, Seo BM. Periodontal ligament stem cells for periodontal regeneration. Curr Oral Health Rep. 2015;2(4):236-44. doi: 10.1007/s40496-015-0060-0.
  • 11. Komaki M, Karakida T, Abe M, Oida S, Mimori K, Iwasaki K, et al. Twist negatively regulates osteoblastic differentiation in human periodontal ligament cells. J Cell Biochem. 2007;100(2):303-14. doi: 10.1002/jcb.21038. [PubMed: 16888803].
  • 12. Namini MS, Bayat N, Tajerian R, Ebrahimi-Barough S, Azami M, Irani S, et al. A comparison study on the behavior of human endometrial stem cell-derived osteoblast cells on PLGA/HA nanocomposite scaffolds fabricated by electrospinning and freeze-drying methods. J Orthop Surg Res. 2018;13(1):63. doi: 10.1186/s13018-018-0754-9. [PubMed: 29587806]. [PubMed Central: PMC5870175].
  • 13. Zong X, Kim K, Fang D, Ran S, Hsiao BS, Chu B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer. 2002;43(16):4403-12. doi: 10.1016/s0032-3861(02)00275-6.
  • 14. Haider A, Gupta KC, Kang IK. PLGA/nHA hybrid nanofiber scaffold as a nanocargo carrier of insulin for accelerating bone tissue regeneration. Nanoscale Res Lett. 2014;9(1):314. doi: 10.1186/1556-276X-9-314. [PubMed: 25024679]. [PubMed Central: PMC4082289].
  • 15. Wang T, Yang X, Qi X, Jiang C. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (epsilon-caprolactone)/ hydroxyapatite/collagen scaffolds. J Transl Med. 2015;13:152. doi: 10.1186/s12967-015-0499-8. [PubMed: 25952675]. [PubMed Central: PMC4429830].
  • 16. Agarwal S, Wendorff JH, Greiner A. Use of electrospinning technique for biomedical applications. Polymer. 2008;49(26):5603-21. doi: 10.1016/j.polymer.2008.09.014.
  • 17. Song X, Ling F, Ma L, Yang C, Chen X. Electrospun hydroxyapatite grafted poly(l-lactide)/poly(lactic-co-glycolic acid) nanofibers for guided bone regeneration membrane. Composites Science and Technology. 2013;79:8-14. doi: 10.1016/j.compscitech.2013.02.014.
  • 18. Farzamfar S, Naseri-Nosar M, Samadian H, Mahakizadeh S, Tajerian R, Rahmati M, et al. Taurine-loaded poly (ε-caprolactone)/gelatin electrospun mat as a potential wound dressing material: In vitro and in vivo evaluation. J Bioact Compat Polym. 2017;33(3):282-94. doi: 10.1177/0883911517737103.
  • 19. Moshaverinia A, Chen C, Akiyama K, Xu X, Chee WW, Schricker SR, et al. Encapsulated dental-derived mesenchymal stem cells in an injectable and biodegradable scaffold for applications in bone tissue engineering. J Biomed Mater Res A. 2013;101(11):3285-94. doi: 10.1002/jbm.a.34546. [PubMed: 23983201].
  • 20. Azami M, Ai J, Ebrahimi-Barough S, Farokhi M, Fard SE. In vitro evaluation of biomimetic nanocomposite scaffold using endometrial stem cell derived osteoblast-like cells. Tissue Cell. 2013;45(5):328-37. doi: 10.1016/j.tice.2013.05.002. [PubMed: 23769321].
  • 21. Moshaverinia A, Chen C, Akiyama K, Ansari S, Xu X, Chee WW, et al. Alginate hydrogel as a promising scaffold for dental-derived stem cells: an in vitro study. J Mater Sci Mater Med. 2012;23(12):3041-51. doi: 10.1007/s10856-012-4759-3. [PubMed: 22945383].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments