Archives of Neuroscience

Published by: Kowsar

Proteomic Analysis of Extremely Low-Frequency ElectroMagnetic Field (ELF-EMF) With Different Intensities in Rats Hippocampus

Mostafa Rezaei-Tavirani 1 , Hadi Hasanzadeh 2 , * , Samaneh Seyyedi 3 , Farhad Ghoujeghi 4 , Vahid Semnani 5 and Hakimeh Zali 6
Authors Information
1 Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
2 Cancer Research Center and Department of Medical Physics, Semnan University of Medical Sciences, Semnan, IR Iran
3 Partolab Molecular and Genetic Diagnostic Laboratory, Medical Genetics Technichal Manager, Tehran, IR Iran
4 Partolab Molecular and Genetic Diagnostic Laboratory, Supervisor of Molecular Department, Tehran, IR Iran
5 Clinical Research Development Unit (CRDU), Kowsar hospital, Semnan University of Medical Sciences, Semnan, IR Iran
6 Proteomics Research Center, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
Article information
  • Archives of Neuroscience: January 2018, 5 (1); e62954
  • Published Online: January 8, 2018
  • Article Type: Research Article
  • Received: April 16, 2017
  • Revised: October 17, 2017
  • Accepted: November 26, 2017
  • DOI: 10.5812/archneurosci.62954

To Cite: Rezaei-Tavirani M, Hasanzadeh H, Seyyedi S, Ghoujeghi F, Semnani V, et al. Proteomic Analysis of Extremely Low-Frequency ElectroMagnetic Field (ELF-EMF) With Different Intensities in Rats Hippocampus, Arch Neurosci. 2018 ; 5(1):e62954. doi: 10.5812/archneurosci.62954.

Abstract
Copyright © 2018, Archives of Neuroscience. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Methods
3. Results
4. Discussion
Acknowledgements
Footnote
References
  • 1. Grellier J, Ravazzani P, Cardis E. Potential health impacts of residential exposures to extremely low frequency magnetic fields in Europe. Environ Int. 2014;62:55-63. doi: 10.1016/j.envint.2013.09.017. [PubMed: 24161447].
  • 2. Karasek M, Woldanska-Okonska M. Electromagnetic fields and human endocrine system. ScientificWorldJournal. 2004;4 Suppl 2:23-8. doi: 10.1100/tsw.2004.175. [PubMed: 15517099].
  • 3. Ivancsits S, Diem E, Pilger A, Rudiger HW, Jahn O. Induction of DNA strand breaks by intermittent exposure to extremely-low-frequency electromagnetic fields in human diploid fibroblasts. Mutat Res. 2002;519(1-2):1-13. [PubMed: 12160887].
  • 4. Cuccurazzu B, Leone L, Podda MV, Piacentini R, Riccardi E, Ripoli C, et al. Exposure to extremely low-frequency (50 Hz) electromagnetic fields enhances adult hippocampal neurogenesis in C57BL/6 mice. Exp Neurol. 2010;226(1):173-82. doi: 10.1016/j.expneurol.2010.08.022. [PubMed: 20816824].
  • 5. Hasanzadeh H, Rezaie Tavirani M, Seyyedi S, Emadi A. Proteomics study of extremely low frequency electromagnetic field, (50 Hz) on human neuroblastoma cells. Koomesh. 2015;17:233-8.
  • 6. Hasanzadeh H, Rezaie-Tavirani M, Seyyedi SS, Zali H, Heydari Keshel S, Jadidi M, et al. Effect of ELF-EMF Exposure on Human Neuroblastoma Cell Line: a Proteomics Analysis. Iran J Cancer Prev. 2014;7(1):22-7. [PubMed: 25250144].
  • 7. Rostami A, Shahani M, Zarrindast MR, Semnanian S, Rahmati Roudsari M, Rezaei Tavirani M, et al. Effects of 3 Hz and 60 Hz Extremely Low Frequency Electromagnetic Fields on Anxiety-Like Behaviors, Memory Retention of Passive Avoidance and Electrophysiological Properties of Male Rats. J Lasers Med Sci. 2016;7(2):120-5. doi: 10.15171/jlms.2016.20. [PubMed: 27330708].
  • 8. Seyyedi SS, Dadras MS, Tavirani MR, Mozdarani H, Toossi P, Zali AR. Proteomic analysis in human fibroblasts by continuous exposure to extremely low-frequency electromagnetic fields. Pak J Biol Sci. 2007;10(22):4108-12. [PubMed: 19090288].
  • 9. Kheifets L, Ahlbom A, Crespi CM, Draper G, Hagihara J, Lowenthal RM, et al. Pooled analysis of recent studies on magnetic fields and childhood leukaemia. Br J Cancer. 2010;103(7):1128-35. doi: 10.1038/sj.bjc.6605838. [PubMed: 20877339].
  • 10. Schuz J. Exposure to extremely low-frequency magnetic fields and the risk of childhood cancer: update of the epidemiological evidence. Prog Biophys Mol Biol. 2011;107(3):339-42. doi: 10.1016/j.pbiomolbio.2011.09.008. [PubMed: 21946043].
  • 11. Zaryabova V, Shalamanova T, Israel M. Pilot study of extremely low frequency magnetic fields emitted by transformers in dwellings. Social aspects. Electromagn Biol Med. 2013;32(2):209-17. doi: 10.3109/15368378.2013.776431. [PubMed: 23675624].
  • 12. Wolf FI, Torsello A, Tedesco B, Fasanella S, Boninsegna A, D'Ascenzo M, et al. 50 Hz extremely low frequency electromagnetic fields enhance cell proliferation and DNA damage, possible involvement of a redox mechanism. Biochim Biophys Acta. 2005;1743(1-2):120-9. doi: 10.1016/j.bbamcr.2004.09.005. [PubMed: 15777847].
  • 13. Ruiz Gomez MJ, De la Pena L, Pastor JM, Martinez Morillo M, Gil L. 25 Hz electromagnetic field exposure has no effect on cell cycle distribution and apoptosis in U-937 and HCA-2/1cch cells. Bioelectrochemistry. 2001;53(1):137-40. [PubMed: 11206921].
  • 14. Falone S, Grossi MR, Cinque B, D'Angelo B, Tettamanti E, Cimini A, et al. Fifty hertz extremely low-frequency electromagnetic field causes changes in redox and differentiative status in neuroblastoma cells. Int J Biochem Cell Biol. 2007;39(11):2093-106. doi: 10.1016/j.biocel.2007.06.001. [PubMed: 17662640].
  • 15. Safari M, Jadidi M, Baghian A, Hasanzadeh H. Proliferation and differentiation of rat bone marrow stem cells by 400muT electromagnetic field. Neurosci Lett. 2016;612:1-6. doi: 10.1016/j.neulet.2015.11.044. [PubMed: 26639423].
  • 16. Piacentini R, Ripoli C, Mezzogori D, Azzena GB, Grassi C. Extremely low-frequency electromagnetic fields promote in vitro neurogenesis via upregulation of Ca(v)1-channel activity. J Cell Physiol. 2008;215(1):129-39. doi: 10.1002/jcp.21293. [PubMed: 17941084].
  • 17. Singh N, Lai H. 60 Hz magnetic field exposure induces DNA crosslinks in rat brain cells. Mutat Res. 1998;400(1-2):313-20. [PubMed: 9685689].
  • 18. Winker R, Ivancsits S, Pilger A, Adlkofer F, Rudiger HW. Chromosomal damage in human diploid fibroblasts by intermittent exposure to extremely low-frequency electromagnetic fields. Mutat Res. 2005;585(1-2):43-9. doi: 10.1016/j.mrgentox.2005.04.013. [PubMed: 16009595].
  • 19. Reale M, Kamal MA, Patruno A, Costantini E, D'Angelo C, Pesce M, et al. Neuronal cellular responses to extremely low frequency electromagnetic field exposure: implications regarding oxidative stress and neurodegeneration. PLoS One. 2014;9(8):104973. doi: 10.1371/journal.pone.0104973. [PubMed: 25127118].
  • 20. Griffin GD, Khalaf W, Hayden KE, Miller EJ, Dowray VR, Creekmore AL, et al. Power frequency magnetic field exposure and gap junctional communication in Clone 9 cells. Bioelectrochemistry. 2000;51(2):117-23. [PubMed: 10910159].
  • 21. Vianale G, Reale M, Amerio P, Stefanachi M, Di Luzio S, Muraro R. Extremely low frequency electromagnetic field enhances human keratinocyte cell growth and decreases proinflammatory chemokine production. Br J Dermatol. 2008;158(6):1189-96. doi: 10.1111/j.1365-2133.2008.08540.x. [PubMed: 18410412].
  • 22. Antonini RA, Benfante R, Gotti C, Moretti M, Kuster N, Schuderer J, et al. Extremely low-frequency electromagnetic field (ELF-EMF) does not affect the expression of alpha3, alpha5 and alpha7 nicotinic receptor subunit genes in SH-SY5Y neuroblastoma cell line. Toxicol Lett. 2006;164(3):268-77. doi: 10.1016/j.toxlet.2006.01.006. [PubMed: 16513298].
  • 23. International Commission on Non-Ionizing Radiation P. Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz). Health Phys. 2010;99(6):818-36. doi: 10.1097/HP.0b013e3181f06c86. [PubMed: 21068601].
  • 24. Zhou RM, Jing YY, Guo Y, Gao C, Zhang BY, Chen C, et al. Molecular interaction of TPPP with PrP antagonized the CytoPrP induced disruption of microtubule structures and cytotoxicity. PLoS One. 2011;6(8):23079. doi: 10.1371/journal.pone.0023079. [PubMed: 21857997].
  • 25. Govindaraj V, Rao AJ. Proteomic identification of non-erythrocytic alpha-spectrin-1 down-regulation in the pre-optic area of neonatally estradiol-17beta treated female adult rats. Horm Mol Biol Clin Investig. 2016;26(3):165-72. doi: 10.1515/hmbci-2016-0008. [PubMed: 27166725].
  • 26. Lee PR, Brady DL, Shapiro RA, Dorsa DM, Koenig JI. Prenatal stress generates deficits in rat social behavior: Reversal by oxytocin. Brain Res. 2007;1156:152-67. doi: 10.1016/j.brainres.2007.04.042. [PubMed: 17540347].
  • 27. Lee H, Joo J, Nah SS, Kim JW, Kim HK, Kwon JT, et al. Changes in Dpysl2 expression are associated with prenatally stressed rat offspring and susceptibility to schizophrenia in humans. Int J Mol Med. 2015;35(6):1574-86. doi: 10.3892/ijmm.2015.2161. [PubMed: 25847191].
  • 28. Brittain JM, Piekarz AD, Wang Y, Kondo T, Cummins TR, Khanna R. An atypical role for collapsin response mediator protein 2 (CRMP-2) in neurotransmitter release via interaction with presynaptic voltage-gated calcium channels. J Biol Chem. 2009;284(45):31375-90. doi: 10.1074/jbc.M109.009951. [PubMed: 19755421].
  • 29. Duan Y, Wang Z, Zhang H, He Y, Fan R, Cheng Y, et al. Extremely low frequency electromagnetic field exposure causes cognitive impairment associated with alteration of the glutamate level, MAPK pathway activation and decreased CREB phosphorylation in mice hippocampus: reversal by procyanidins extracted from the lotus seedpod. Food Funct. 2014;5(9):2289-97. doi: 10.1039/c4fo00250d. [PubMed: 25066354].
  • 30. Oke Y, Kawano F, Nomura S, Ohira T, Fujita R, Masa Hiro T, et al. Modulation of hippocampal proteins by exposure to simulated microgravity environment during the postnatal development in rats. Aerosp Environ Med. 2011;48:23-34.
  • 31. Orosz F, Olah J, Ovadi J. Triosephosphate isomerase deficiency: new insights into an enigmatic disease. Biochim Biophys Acta. 2009;1792(12):1168-74. doi: 10.1016/j.bbadis.2009.09.012. [PubMed: 19786097].
  • 32. Sajan FD, Martiniuk F, Marcus DL, Frey W2, Hite R, Bordayo EZ, et al. Apoptotic gene expression in Alzheimer's disease hippocampal tissue. Am J Alzheimers Dis Other Demen. 2007;22(4):319-28. doi: 10.1177/1533317507302447. [PubMed: 17712163].
  • 33. Weeber EJ, Levy M, Sampson MJ, Anflous K, Armstrong DL, Brown SE, et al. The role of mitochondrial porins and the permeability transition pore in learning and synaptic plasticity. J Biol Chem. 2002;277(21):18891-7. doi: 10.1074/jbc.M201649200. [PubMed: 11907043].
  • 34. Ovadi J, Orosz F, Lehotzky A. What is the biological significance of the brain-specific tubulin-polymerization promoting protein (TPPP/p25)?. IUBMB Life. 2005;57(11):765-8. doi: 10.1080/15216540500381101. [PubMed: 16511970].
  • 35. Tadi M, Allaman I, Lengacher S, Grenningloh G, Magistretti PJ. Learning induced gene expression in the hippocampus reveals a role of neuron astrocyte metabolic coupling in long term memory. PLoS One. 2015;10(10):141568. doi: 10.1371/journal.pone.0141568. [PubMed: 26513352].
  • 36. Zali H, Zamanian-Azodi M, Rezaei Tavirani M, Akbar-Zadeh Baghban A. Protein Drug Targets of Lavandula angustifolia on treatment of Rat Alzheimer's Disease. Iran J Pharm Res. 2015;14(1):291-302. [PubMed: 25561935].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments