To Cite:
Hussain
L, Saeed
S, Awan
I A, Idris
A. Multiscaled Complexity Analysis of EEG Epileptic Seizure Using Entropy-Based Techniques,
Arch Neurosci.
2018
; 5(1):e61161.
doi: 10.5812/archneurosci.61161.
1.
James CJ. Detection of epileptiform activity in the electroencephalogram using artificial neural networks. Christchurch, New Zealand: University of Canterbury; 1997.
2.
Tzallas AT, Tsipouras MG, Tsalikakis DG, Karvounis EC, Astrakas L, Konitsiotis S, et al. Epilepsy histological, electroencephalographic and psychological aspects. In: Stevanovic D, editor. Croatia: In Tech; 2012. Automated epileptic seizure detection methods, a review study.
3.
Husain SJ, Rao KS. Epileptic seizures classification from eeg signals using neural networks. International Conference on Information and Network Technology, (ICINT 2012). India. 2012. p. 269-73.
4.
Mirzaei A, Ayatollahi A, Nasrabadi AM. Automated detection of epileptic seizures using mixed methodology, wavelet chaos KNN classifier mutual information. Analysis. 2011;12(2).
5.
Andreadis II, Giannakakis GA, Papageorgiou C, Nikita KS. Detecting complexity abnormalities in dyslexia measuring approximate entropy of electroencephalographic signals, In engineering in medicine and biology society. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:6292-5. doi: 10.1109/iembs.2009.5332798. [PubMed: 9963918].
6.
Morabito FC, Labate D, La Foresta F, Bramanti A, Morabito G, Palamara I. Multivariate multi scale permutation entropy for complexity analysis of alzheimers disease EEG. Entropy. 2012;14(12):1186-202. doi: 10.3390/e14071186.
8.
Deisboeck T, Kresh JY. Complex systems science in biomedicine. Spr Sci Bus Med. 2007:27-30.
9.
Stam CJ. Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol. 2005;116(10):2266-301. doi: 10.1016/j.clinph.2005.06.011. [PubMed: 16115797].
10.
Grassberger P, Procaccia I. Estimation of the Kolmogorov entropy from a chaotic signal. Phys Rev A. 1983;28(4):2591-3. doi: 10.1103/PhysRevA.28.2591.
11.
Richman JS, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy. Am J Physiol Heart Circ Physiol. 2000;278(6):2039-49. doi: 10.1152/ajpheart.2000.278.6.H2039. [PubMed: 10843903].
12.
Wu SD, Wu PH, Wu CW, Ding JJ, Wang CC. Bearing fault diagnosis based on multiscale permutation entropy and support vector machine. Entropy. 2012;14(12):1343-56. doi: 10.3390/e14081343.
13.
Peng CK, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos. 1995;5(1):82-7. doi: 10.1063/1.166141. [PubMed: 11538314].
14.
Ho YL, Lin C, Lin YH, Lo MT. The prognostic value of non-linear analysis of heart rate variability in patients with congestive heart failure--a pilot study of multiscale entropy. PLoS One. 2011;6(4):18699. doi: 10.1371/journal.pone.0018699. [PubMed: 21533258].
15.
Ahmed MU, Mandic DP. Multivariate multiscale entropy: a tool for complexity analysis of multichannel data. Phys Rev E Stat Nonlin Soft Matter Phys. 2011;84(6 Pt 1):61918. doi: 10.1103/PhysRevE.84.061918. [PubMed: 22304127].
16.
Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of biological signals. Phys Rev E Stat Nonlin Soft Matter Phys. 2005;71(2 Pt 1):21906. doi: 10.1103/PhysRevE.71.021906. [PubMed: 15783351].
17.
Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett. 2002;89(6):68102. doi: 10.1103/PhysRevLett.89.068102. [PubMed: 12190613].
18.
Yuan HK, Lin C, Tsai PH, Chang FC, Lin KP, Hu HH, et al. Acute increase of complexity in the neurocardiovascular dynamics following carotid stenting. Acta Neurol Scand. 2011;123(3):187-92. doi: 10.1111/j.1600-0404.2010.01384.x. [PubMed: 20569227].
19.
Andrzejak RG, Lehnertz K, Mormann F, Rieke C, David P, Elger CE. Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Phys Rev E Stat Nonlin Soft Matter Phys. 2001;64(6 Pt 1):61907. doi: 10.1103/PhysRevE.64.061907. [PubMed: 11736210].
20.
Wu SD, Wu CW, Lin SG, Wang CC, Lee KY. Time series analysis using composite multiscale entropy. Entropy. 2013;15(3):1069-84. doi: 10.3390/e15031069.
21.
Wang D, Miao D, Xie C. Best basis based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection. Expert Sys Appl. 2011;38:14314-20. doi: 10.1016/j.eswa.2011.05.096.
23.
Rosso OA, Blanco S, Yordanova J, Kolev V, Figliola A, Schurmann M, et al. Wavelet entropy: a new tool for analysis of short duration brain electrical signals. J Neurosci Methods. 2001;105(1):65-75. [PubMed: 11166367].
24.
Wu Y, Zhou Y, Saveriades G, Agaian S, Noonan JP, Natarajan P. Local Shannon entropy measure with statistical tests for image randomness. Inf Sci. 2013;222:323-42. doi: 10.1016/j.ins.2012.07.049.
25.
Avci E, Hanbay D, Varol A. An expert discrete wavelet adaptive network based fuzzy inference system for digital modulation recognition. Expert Sys Appl. 2007;33(3):582-9. doi: 10.1016/j.eswa.2006.06.001.
26.
Egan JP. Signal detection theory and, (ROC) analysis. Massachusetts, United States: Academic Press; 1975.
27.
Swets JA, Dawes RM, Monahan J. Psychological Science Can Improve Diagnostic Decisions. Psychol Sci Public Interest. 2000;1(1):1-26. doi: 10.1111/1529-1006.001. [PubMed: 26151979].
28.
Zou KH. Receiver operating characteristic, (ROC) literature research. Chicago: On line bibliography; 2002. Available from: http://splweb.bwh.harvard.edu:2000;8000.
29.
Fawcett T. An introduction to ROC analysis. Pattern Recognit Lett. 2006;27(8):861-74. doi: 10.1016/j.patrec.2005.10.010.
30.
Hussain L, Aziz W, Nadeem SA, Abbasi AQ. Classification of normal and pathological heart signal variability using machine learning techniques. Int J Darsh Inst Eng Res Emer Tech. 2014;3(13-8).
31.
Hussain L, Aziz W, Alowibdi JS, Habib N, Rafique M, Saeed S, et al. Symbolic time series analysis of electroencephalographic (EEG) epileptic seizure and brain dynamics with eye-open and eye-closed subjects during resting states. J Physiol Anthropol. 2017;36(1):21. doi: 10.1186/s40101-017-0136-8. [PubMed: 28335804].
32.
Neymotin SA, Lee H, Fenton AA, Lytton WW. Interictal EEG discoordination in a rat seizure model. J Clin Neurophysiol. 2010;27(6):438-44. doi: 10.1097/WNP.0b013e3181fe059e. [PubMed: 21076325].
33.
Hussain L, Aziz W, Nadeem SA, Shah SA, Majid A. Electroencephalography, (EEG) analysis of alcoholic and control subjects using multiscale permutation entropy. J Multidiscip Eng Sci Technol. 2014;1(380-7).
34.
Hussain L, Aziz W, Saeed S, Shah SA, Nadeem MS, Awan IA, et al. Quantifying the dynamics of electroencephalographic, (EEG) signals to distinguish alcoholic and non-alcoholic subjects using an MSE based Kd tree algorithm. Biomed Tech, (Berl). 2017.
35.
Hussain L, Aziz W, Saeed S, Shah SA, Nadeem SA, Awan IA, et al. Complexity analysis of EEG motor movement with eye open and close subjects using multiscale permutation entropy, (MPE) technique. Biomed Res, (India). 2017;28(16).
36.
Qumar A, Aziz W, Saeed S, Ahmed I, Hussain L. Comparative study of multiscale entropy analysis and symbolic time series analysis when applied to human gait dynamics. Open Source Systems and Technologies, (ICOSST), International Conference. Pakistan. 2013. p. 126-32.
37.
Rathore S, Iftikhar A, Ali A, Hussain M, Jalil A. Capture largest included circles, an approach for counting red blood cells. Emerg Trends Appl Info Commun Technol. 2012:373-84.
38.
Widman G, Schreiber T, Rehberg B, Hoeft A, Elger CE. Quantification of depth of anesthesia by nonlinear time series analysis of brain electrical activity. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 2000;62(4 Pt A):4898-903. [PubMed: 11089035].
39.
Wesierska M, Dockery C, Fenton AA. Beyond memory, navigation, and inhibition: behavioral evidence for hippocampus dependent cognitive coordination in the rat. J Neurosci. 2005;25(9):2413-9. doi: 10.1523/JNEUROSCI.3962-04.2005. [PubMed: 15745968].
40.
Hermann BP, Lin JJ, Jones JE, Seidenberg M. The emerging architecture of neuropsychological impairment in epilepsy. Neurol Clin. 2009;27(4):881-907. doi: 10.1016/j.ncl.2009.08.001. [PubMed: 19853214].
41.
Oyegbile TO, Dow C, Jones J, Bell B, Rutecki P, Sheth R, et al. The nature and course of neuropsychological morbidity in chronic temporal lobe epilepsy. Neurology. 2004;62(10):1736-42. [PubMed: 15159470].
42.
Hermann BP, Seidenberg M, Bell B. Psychiatric comorbidity in chronic epilepsy: identification, consequences, and treatment of major depression. Epilepsia. 2000;41 Suppl 2:31-41. [PubMed: 10885738].
43.
Johnson EK, Jones JE, Seidenberg M, Hermann BP. The relative impact of anxiety, depression, and clinical seizure features on health-related quality of life in epilepsy. Epilepsia. 2004;45(5):544-50. doi: 10.1111/j.0013-9580.2004.47003.x. [PubMed: 15101836].
44.
Hermann B, Seidenberg M, Jones J. The neurobehavioural comorbidities of epilepsy: can a natural history be developed?. Lancet Neurol. 2008;7(2):151-60. doi: 10.1016/S1474-4422(08)70018-8. [PubMed: 18207113].
45.
Phillips WA, Silverstein SM. Convergence of biological and psychological perspectives on cognitive coordination in schizophrenia. Behav Brain Sci. 2003;26(1):65-82. [PubMed: 14598440].
46.
Schiff SJ, Colella D, Jacyna GM, Hughes E, Creekmore JW, Marshall A, et al. Brain chirps: spectrographic signatures of epileptic seizures. Clin Neurophysiol. 2000;111(6):953-8. [PubMed: 10825700].
47.
Lange HH, Lieb JP, Engel JJ, Crandall PH. Temporo-spatial patterns of pre-ictal spike activity in human temporal lobe epilepsy. Electroencephalogr Clin Neurophysiol. 1983;56(6):543-55. [PubMed: 6197273].
48.
Geva AB, Kerem DH. Forecasting generalized epileptic seizures from the EEG signal by wavelet analysis and dynamic unsupervised fuzzy clustering. IEEE Trans Biomed Eng. 1998;45(10):1205-16. doi: 10.1109/10.720198. [PubMed: 9775534].
49.
Lehnertz K, Andrzejak RG, Arnhold J, Kreuz T, Mormann F, Rieke C, et al. Nonlinear EEG analysis in epilepsy: its possible use for interictal focus localization, seizure anticipation, and prevention. J Clin Neurophysiol. 2001;18(3):209-22. [PubMed: 11528294].
50.
Le Van Quyen M, Martinerie J, Navarro V, Boon P, D'Have M, Adam C, et al. Anticipation of epileptic seizures from standard EEG recordings. Lancet. 2001;357(9251):183-8. doi: 10.1016/S0140-6736(00)03591-1. [PubMed: 11213095].
51.
Parra LC, Spence CD, Gerson AD, Sajda P. Recipes for the linear analysis of EEG. Neuroimage. 2005;28(2):326-41. doi: 10.1016/j.neuroimage.2005.05.032. [PubMed: 16084117].
52.
Acar E, Aykut Bingol C, Bingol H, Bro R, Yener B. Multiway analysis of epilepsy tensors. Bioinformatics. 2007;23(13):10-8. doi: 10.1093/bioinformatics/btm210. [PubMed: 17646285].
53.
Miwakeichi F, Martinez Montes E, Valdes Sosa PA, Nishiyama N, Mizuhara H, Yamaguchi Y. Decomposing EEG data into space-time-frequency components using parallel factor analysis. Neuroimage. 2004;22(3):1035-45. doi: 10.1016/j.neuroimage.2004.03.039. [PubMed: 15219576].
Readers' Comments