Archives of Neuroscience

Published by: Kowsar

Anti-Oxidative and Neuroprotective Effects of Supplementary Flaxseed on Oxidative Damage in the Hippocampus Area of a Rat Model of Hypoxia

Fatemeh Navaie 1 , Gholamreza Hassanzadeh 1 , Simin Mahakizadeh 2 , Kobra Mehrannia 1 , Tahereh Alizamir 3 , Nasrin Dashti 4 , Mahnaz Poorhassan 5 , Tahmineh Mokhtari 6 , 7 and Mohammad Akbari 1 , *
Authors Information
1 Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
2 Department of Anatomy, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
3 Department of Anatomy, School of Medicine, Hamedan University of Medicaid Sciences, Hamedan, Iran
4 Department of Clinical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
5 Department of Anatomy and Cell Biology, School of Medicine, Shahid Beheshti University of Medicaid Sciences, Tehran, Iran
6 Nervous System Stem Cells Research Center, Semnan University of Medicaid Sciences, Semnan, Iran
7 Department of Anatomy, School of Medicine, Semnan University of Medicaid Sciences, Semnan, Iran
Article information
  • Archives of Neuroscience: October 2018, 5 (4); e60193
  • Published Online: September 8, 2018
  • Article Type: Research Article
  • Received: August 14, 2017
  • Revised: May 28, 2018
  • Accepted: August 20, 2018
  • DOI: 10.5812/ans.60193

To Cite: Navaie F , Hassanzadeh G, Mahakizadeh S , Mehrannia K , Alizamir T, et al. Anti-Oxidative and Neuroprotective Effects of Supplementary Flaxseed on Oxidative Damage in the Hippocampus Area of a Rat Model of Hypoxia, Arch Neurosci. 2018 ; 5(4):e60193. doi: 10.5812/ans.60193.

Copyright © 2018, Archives of Neuroscience. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Methods
3. Results
4. Discussion
  • 1. Farias JG, Puebla M, Acevedo A, Tapia PJ, Gutierrez E, Zepeda A, et al. Oxidative stress in rat testis and epididymis under intermittent hypobaric hypoxia: protective role of ascorbate supplementation. J Androl. 2010;31(3):314-21. doi: 10.2164/jandrol.108.007054. [PubMed: 20378932].
  • 2. Brock M, Haider TJ, Vogel J, Gassmann M, Speich R, Trenkmann M, et al. The hypoxia-induced microRNA-130a controls pulmonary smooth muscle cell proliferation by directly targeting CDKN1A. Int J Biochem Cell Biol. 2015;61:129-37. doi: 10.1016/j.biocel.2015.02.002. [PubMed: 25681685].
  • 3. Catassi A, Servent D, Paleari L, Cesario A, Russo P. Multiple roles of nicotine on cell proliferation and inhibition of apoptosis: implications on lung carcinogenesis. Mutat Res. 2008;659(3):221-31. doi: 10.1016/j.mrrev.2008.04.002. [PubMed: 18495523].
  • 4. Bergstrom HC, McDonald CG, French HT, Smith RF. Continuous nicotine administration produces selective, age-dependent structural alteration of pyramidal neurons from prelimbic cortex. Synapse. 2008;62(1):31-9. doi: 10.1002/syn.20467. [PubMed: 17957736].
  • 5. Miura S, Ishida-Nakajima W, Ishida A, Kawamura M, Ohmura A, Oguma R, et al. Ascorbic acid protects the newborn rat brain from hypoxic-ischemia. Brain Dev. 2009;31(4):307-17. doi: 10.1016/j.braindev.2008.06.010. [PubMed: 18682317].
  • 6. Eichenbaum H. Hippocampus: cognitive processes and neural representations that underlie declarative memory. Neuron. 2004;44(1):109-20. doi: 10.1016/j.neuron.2004.08.028. [PubMed: 15450164].
  • 7. Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int J Biomed Sci. 2008;4(2):89-96. [PubMed: 23675073]. [PubMed Central: PMC3614697].
  • 8. da Cunha J, Macedo da Costa TH, Ito MK. Influences of maternal dietary intake and suckling on breast milk lipid and fatty acid composition in low-income women from Brasilia, Brazil. Early Hum Dev. 2005;81(3):303-11. doi: 10.1016/j.earlhumdev.2004.08.004. [PubMed: 15814213].
  • 9. Zhang W, Hu X, Yang W, Gao Y, Chen J. Omega-3 polyunsaturated fatty acid supplementation confers long-term neuroprotection against neonatal hypoxic-ischemic brain injury through anti-inflammatory actions. Stroke. 2010;41(10):2341-7. doi: 10.1161/STROKEAHA.110.586081. [PubMed: 20705927]. [PubMed Central: PMC3021248].
  • 10. Gholaminejhad M, Arabzadeh S, Akbari M, Mohamadi Y, Hassanzadeh G. Anti-oxidative and neuroprotective effects of flaxseed on experimental unilateral spinal cord injury in rat. J Contemp Med Sci. 2017;3(10):213-7. doi: 10.22317/jcms.06201703.
  • 11. Kittur S, Wilasrusmee S, Pedersen WA, Mattson MP, Straube-West K, Wilasrusmee C, et al. Neurotrophic and Neuroprotective effects of milk thistle (silybum marianum)on neurons in culture. J Mol Neurosci. 2002;18(3):265-70. doi: 10.1385/jmn:18:3:265.
  • 12. Wang MJ, Lin WW, Chen HL, Chang YH, Ou HC, Kuo JS, et al. Silymarin protects dopaminergic neurons against lipopolysaccharide-induced neurotoxicity by inhibiting microglia activation. Eur J Neurosci. 2002;16(11):2103-12. [PubMed: 12473078].
  • 13. Diamond DA. Adolescent varicocele: emerging understanding. BJU Int. 2003;92 Suppl 1:48-51. [PubMed: 12969010].
  • 14. Mucci Dde B, Fernandes FS, Souza Ados S, Sardinha FL, Soares-Mota M, Tavares do Carmo M. Flaxseed mitigates brain mass loss, improving motor hyperactivity and spatial memory, in a rodent model of neonatal hypoxic-ischemic encephalopathy. Prostaglandins Leukot Essent Fatty Acids. 2015;97:13-9. doi: 10.1016/j.plefa.2015.03.001. [PubMed: 25865679].
  • 15. Atlasi MA, Naderian H, Noureddini M, Fakharian E, Azami A. Morphology of Rat Hippocampal CA1 Neurons Following Modified Two and Four-Vessels Global Ischemia Models. Arch Trauma Res. 2013;2(3):124-8. doi: 10.5812/atr.10240. [PubMed: 24693522]. [PubMed Central: PMC3950915].
  • 16. Back SA. Cerebral white and gray matter injury in newborns: new insights into pathophysiology and management. Clin Perinatol. 2014;41(1):1-24. doi: 10.1016/j.clp.2013.11.001. [PubMed: 24524444]. [PubMed Central: PMC3947650].
  • 17. Logitharajah P, Rutherford MA, Cowan FM. Hypoxic-ischemic encephalopathy in preterm infants: antecedent factors, brain imaging, and outcome. Pediatr Res. 2009;66(2):222-9. doi: 10.1203/PDR.0b013e3181a9ef34. [PubMed: 19390490].
  • 18. Perez A, Ritter S, Brotschi B, Werner H, Caflisch J, Martin E, et al. Long-term neurodevelopmental outcome with hypoxic-ischemic encephalopathy. J Pediatr. 2013;163(2):454-9. doi: 10.1016/j.jpeds.2013.02.003. [PubMed: 23498155].
  • 19. Hedtjarn M, Leverin AL, Eriksson K, Blomgren K, Mallard C, Hagberg H. Interleukin-18 involvement in hypoxic-ischemic brain injury. J Neurosci. 2002;22(14):5910-9. [PubMed: 12122053].
  • 20. Daval JL, Ghersi-Egea JF, Oillet J, Koziel V. A simple method for evaluation of superoxide radical production in neural cells under various culture conditions: application to hypoxia. J Cereb Blood Flow Metab. 1995;15(1):71-7. doi: 10.1038/jcbfm.1995.8. [PubMed: 7798340].
  • 21. Maulik D, Numagami Y, Ohnishi ST, Mishra OP, Delivoria-Papadopoulos M. Direct measurement of oxygen free radicals during in utero hypoxia in the fetal guinea pig brain. Brain Res. 1998;798(1-2):166-72. doi: 10.1016/s0006-8993(98)00408-9.
  • 22. Mishra OP, Delivoria-Papadopoulos M. Cellular mechanisms of hypoxic injury in the developing brain. Brain Res Bull. 1999;48(3):233-8. doi: 10.1016/s0361-9230(98)00170-1.
  • 23. Pourcyrous M, Leffler CW, Bada HS, Korones SB, Busija DW. Brain superoxide anion generation in asphyxiated piglets and the effect of indomethacin at therapeutic dose. Pediatr Res. 1993;34(3):366-9. doi: 10.1203/00006450-199309000-00025. [PubMed: 8134180].
  • 24. Mishra OP, Delivoria-Papadopoulos M. Anti-oxidant enzymes in fetal guinea pig brain during development and the effect of maternal hypoxia. Dev Brain Res. 1988;42(2):173-9. doi: 10.1016/0165-3806(88)90235-0.
  • 25. Mover H, Ar A. Antioxidant enzymatic activity in embryos and placenta of rats chronically exposed to hypoxia and hyperoxia. Comp Biochem Physiol: Pharmacol Toxicol Endocrinol. 1997;117(2):151-7. doi: 10.1016/s0742-8413(97)00062-5.
  • 26. Lievre V, Becuwe P, Bianchi A, Bossenmeyer-Pourie C, Koziel V, Franck P, et al. Intracellular generation of free radicals and modifications of detoxifying enzymes in cultured neurons from the developing rat forebrain in response to transient hypoxia. Neuroscience. 2001;105(2):287-97. [PubMed: 11672596].
  • 27. Carotenuto F, Costa A, Albertini MC, Rocchi MB, Rudov A, Coletti D, et al. Dietary Flaxseed Mitigates Impaired Skeletal Muscle Regeneration: in Vivo, in Vitro and in Silico Studies. Int J Med Sci. 2016;13(3):206-19. doi: 10.7150/ijms.13268. [PubMed: 26941581]. [PubMed Central: PMC4773285].
  • 28. Mokhtari T, Faghir Ghanesefat H, Hassanzadeh G, Moayeri A, Haeri SMJ, Rezaee Kanavee A, et al. Effects of flaxseed oil supplementation on renal dysfunction due to ischemia/reperfusion in rat. J Basic Res Med Sci. 2017;4(1):22-9. doi: 10.18869/acadpub.jbrms.4.1.22.
  • 29. Calder PC. Polyunsaturated fatty acids, inflammation, and immunity. Lipids. 2001;36(9):1007-24. [PubMed: 11724453].
  • 30. Rodriguez-Leyva D, Bassett CMC, McCullough R, Pierce GN. The cardiovascular effects of flaxseed and its omega-3 fatty acid, alpha-linolenic acid. Can J Cardiol. 2010;26(9):489-96. doi: 10.1016/s0828-282x(10)70455-4.
  • 31. Nounou HA, Deif MM, Shalaby MA. Effect of flaxseed supplementation and exercise training on lipid profile, oxidative stress and inflammation in rats with myocardial ischemia. Lipids Health Dis. 2012;11:129. doi: 10.1186/1476-511X-11-129. [PubMed: 23036047]. [PubMed Central: PMC3508923].
  • 32. Keen CL, Lonnerdal B, Clegg M, Hurley LS. Developmental changes in composition of rat milk: trace elements, minerals, protein, carbohydrate and fat. J Nutr. 1981;111(2):226-36. doi: 10.1093/jn/111.2.226. [PubMed: 7463167].
  • 33. Reeves PG, Nielsen FH, Fahey GC Jr. AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr. 1993;123(11):1939-51. doi: 10.1093/jn/123.11.1939. [PubMed: 8229312].
  • 34. Vannucci RC, Connor JR, Mauger DT, Palmer C, Smith MB, Towfighi J, et al. Rat model of perinatal hypoxic-ischemic brain damage. J Neurosci Res. 1999;55(2):158-63. doi: 10.1002/(SICI)1097-4547(19990115)55:2<158::AID-JNR3>3.0.CO;2-1. [PubMed: 9972818].
  • 35. Arteaga O, Revuelta M, Urigüen L, Martínez-Millán L, Hilario E, Álvarez A. Docosahexaenoic acid reduces cerebral damage and ameliorates long-term cognitive impairments caused by neonatal hypoxia–ischemia in rats. Mol Neurobiol. 2017;54(9):7137-55.
  • 36. Berman DR, Mozurkewich E, Liu Y, Barks J. Docosahexaenoic acid pretreatment confers neuroprotection in a rat model of perinatal cerebral hypoxia-ischemia. Am J Obstet Gynecol. 2009;200(3):305 e1-6. doi: 10.1016/j.ajog.2009.01.020. [PubMed: 19254588]. [PubMed Central: PMC2824338].
  • 37. Heinrichs SC. Dietary omega-3 fatty acid supplementation for optimizing neuronal structure and function. Mol Nutr Food Res. 2010;54(4):447-56. doi: 10.1002/mnfr.200900201. [PubMed: 20112300].
  • 38. Innis SM. Dietary omega 3 fatty acids and the developing brain. Brain Res. 2008;1237:35-43. doi: 10.1016/j.brainres.2008.08.078. [PubMed: 18789910].
  • 39. Kitajka K, Sinclair AJ, Weisinger RS, Weisinger HS, Mathai M, Jayasooriya AP, et al. Effects of dietary omega-3 polyunsaturated fatty acids on brain gene expression. Proc Natl Acad Sci U S A. 2004;101(30):10931-6. doi: 10.1073/pnas.0402342101. [PubMed: 15263092]. [PubMed Central: PMC503722].
  • 40. Belayev L, Marcheselli VL, Khoutorova L, Rodriguez de Turco EB, Busto R, Ginsberg MD, et al. Docosahexaenoic acid complexed to albumin elicits high-grade ischemic neuroprotection. Stroke. 2005;36(1):118-23. doi: 10.1161/01.STR.0000149620.74770.2e. [PubMed: 15569878].
  • 41. Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K, et al. A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest. 2005;115(10):2774-83. doi: 10.1172/JCI25420. [PubMed: 16151530]. [PubMed Central: PMC1199531].
  • 42. Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, Musto A, et al. Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem. 2003;278(44):43807-17. doi: 10.1074/jbc.M305841200. [PubMed: 12923200].
  • 43. Bazan NG. Neuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations, and Alzheimer's disease. J Lipid Res. 2009;50 Suppl:S400-5. doi: 10.1194/jlr.R800068-JLR200. [PubMed: 19018037]. [PubMed Central: PMC2674685].
  • 44. Lukiw WJ, Bazan NG. Docosahexaenoic acid and the aging brain. J Nutr. 2008;138(12):2510-4. doi: 10.3945/jn.108.096016. [PubMed: 19022980]. [PubMed Central: PMC2666388].
  • 45. Johnston MV, Trescher WH, Ishida A, Nakajima W. Neurobiology of hypoxic-ischemic injury in the developing brain. Pediatr Res. 2001;49(6):735-41. doi: 10.1203/00006450-200106000-00003. [PubMed: 11385130].
  • 46. Perlman JM. Pathogenesis of hypoxic-ischemic brain injury. J Perinatol. 2007;27(S1):S39-46. doi: 10.1038/
  • 47. Pan HC, Kao TK, Ou YC, Yang DY, Yen YJ, Wang CC, et al. Protective effect of docosahexaenoic acid against brain injury in ischemic rats. J Nutr Biochem. 2009;20(9):715-25. doi: 10.1016/j.jnutbio.2008.06.014. [PubMed: 18805685].

Featured Image:

Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments