Archives of Neuroscience

Published by: Kowsar

Oxidative Stress Gated by Fenton and Haber Weiss Reactions and Its Association With Alzheimer’s Disease

Tushar Kanti Das 1 , Mas Rina Wati 1 and Kaneez Fatima-Shad 2 , *
Authors Information
1 Institute of Health Sciences, University Brunei Darussalam, Brunei Darussalam, Brunei
2 School of Medical and Molecular Biosciences, Faculty of Science, University Technology Sydney, Sydney, Australia
Article information
  • Archives of Neuroscience: April 2015, 2 (2); e60038
  • Published Online: April 1, 2015
  • Article Type: Review Article
  • Received: May 29, 2014
  • Revised: June 15, 2014
  • Accepted: June 17, 2014
  • DOI: 10.5812/archneurosci.20078

To Cite: Kanti Das T, Wati M R, Fatima-Shad K. Oxidative Stress Gated by Fenton and Haber Weiss Reactions and Its Association With Alzheimer’s Disease, Arch Neurosci. 2015 ; 2(2):e60038. doi: 10.5812/archneurosci.20078.

Copyright © 2015, Tehran University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Context
2. Evidence Acquisitions
3. Results
4. Discussion
  • 1. Rival T, Page RM, Chandraratna DS, Sendall TJ, Ryder E, Liu B, et al. Fenton chemistry and oxidative stress mediate the toxicity of the beta-amyloid peptide in a Drosophila model of Alzheimer's disease. Eur J Neurosci. 2009; 29(7): 1335-47[DOI][PubMed]
  • 2. Everett J, Cespedes E, Shelford LR, Exley C, Collingwood JF, Dobson J, et al. Ferrous iron formation following the co-aggregation of ferric iron and the Alzheimer's disease peptide beta-amyloid (1-42). J R Soc Interface. 2014; 11(95): 20140165[DOI][PubMed]
  • 3. Lipinski B. Is it oxidative or free radical stress and why does it matter. Oxid Antioxid Med Sci. 2012; 1(1): 1[DOI]
  • 4. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ J. 2012; 5(1): 9-19[DOI][PubMed]
  • 5. Salvador GA, Uranga RM, Giusto NM. Iron and mechanisms of neurotoxicity. Int J Alzheimers Dis. 2010; 2011: 720658[DOI][PubMed]
  • 6. Dorszewska J, Różycka A, Oczkowska A, Florczak-Wyspiańska J, Prendecki M, Dezor M, et al. Mutations of TP53 Gene and Oxidative Stress in Alzheimer’s Disease Patients. ADAPT. 2014; 3(1): 24-32[DOI]
  • 7. Dikalov S, Griendling KK, Harrison DG. Measurement of reactive oxygen species in cardiovascular studies. Hypertension. 2007; 49(4): 717-27[DOI][PubMed]
  • 8. Buetler TM, Krauskopf A, Ruegg UT. Role of superoxide as a signaling molecule. News Physiol Sci. 2004; 19: 120-3[PubMed]
  • 9. Massey V. Activation of molecular oxygen by flavins and flavoproteins. J Biol Chem. 1994; 269(36): 22459-62[PubMed]
  • 10. Chaiyen P, Fraaije MW, Mattevi A. The enigmatic reaction of flavins with oxygen. Trends Biochem Sci. 2012; 37(9): 373-80[DOI][PubMed]
  • 11. Shad Kaneez F, Khalid A. In vitro effects of hypolipidemic drugs on oxidative stress. Proc Physiolo Sci J. 2013; 44: 89-90
  • 12. Saima G, Sagheer A, Humaira G, Fatima KS. The antioxidant potential of Brassica rapa L. on glutathione peroxidase, superoxide dismutase enzymes and total antioxidant status. rrml. 2013; 21(2): 161-9
  • 13. Fatima-Shad K. Investigating the Protective Effect of Solanum melongena. Asian J Health Clin Res. 2011; 1(1): 276-94
  • 14. Ashraf SS, Rao MV, Kaneez FS, Qadri S, Al-Marzouqi AH, Chandranath IS, et al. Nigella sativa extract as a potent antioxidant for petrochemical-induced oxidative stress. J Chromatogr Sci. 2011; 49(4): 321-6[PubMed]
  • 15. Fatima Shad K. Apo lipoprotein E4 gene APOE4: An early predictor of Dementia / Alzheimer's disease. Scientific research and essay. 2013; 8(29): 1374-9
  • 16. Nawaz R, Zahir E, Fatima Shad K. Rhodium Interaction with Human NRG1 Gene of Schizophrenia. JPAIR Multidisciplinary Research. 2012; 7(1)[DOI]
  • 17. Saeed SA, Shad KF, Saleem T, Javed F, Khan MU. Some new prospects in the understanding of the molecular basis of the pathogenesis of stroke. Exp Brain Res. 2007; 182(1): 1-10[DOI][PubMed]
  • 18. Shad KF, Aghazadeh Y, Ahmad S, Kress B. Peripheral markers of Alzheimer's disease: surveillance of white blood cells. Synapse. 2013; 67(8): 541-3[DOI][PubMed]
  • 19. Shad Kaneez F, NurulBahria O. , Aghazadah Y, Sagheer A. , Bodo K. . Early diagnosis of Alzheimer's disease in the brain stem nuclei using MR spectroscopy. Scit Neuros Conferenc J. 2013;
  • 20. Aghazadeh Y, Paulose V, Sagheer A, Shad Kaneez F, Quirbach A. H-MR-Spectroscopy of inferior colliculus as a tool for early diagnosis of Alzheimer disease in a feasibility study.
  • 21. Shad Kaneez F, Khalid A. Barcelona Spain Effects of Statins on Memory. FENS Forum Abstr. 2012;
  • 22. Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR. Copper, iron and zinc in Alzheimer's disease senile plaques. J Neurol Sci. 1998; 158(1): 47-52[PubMed]
  • 23. Mantyh PW, Ghilardi JR, Rogers S, DeMaster E, Allen CJ, Stimson ER, et al. Aluminum, iron, and zinc ions promote aggregation of physiological concentrations of beta-amyloid peptide. J Neurochem. 1993; 61(3): 1171-4[PubMed]
  • 24. Yamamoto A, Shin RW, Hasegawa K, Naiki H, Sato H, Yoshimasu F, et al. Iron (III) induces aggregation of hyperphosphorylated tau and its reduction to iron (II) reverses the aggregation: implications in the formation of neurofibrillary tangles of Alzheimer's disease. J Neurochem. 2002; 82(5): 1137-47[PubMed]
  • 25. Hureau C, Faller P. Abeta-mediated ROS production by Cu ions: structural insights, mechanisms and relevance to Alzheimer's disease. Biochimie. 2009; 91(10): 1212-7[DOI][PubMed]
  • 26. Huang X, Cuajungco MP, Atwood CS, Hartshorn MA, Tyndall JD, Hanson GR, et al. Cu(II) potentiation of alzheimer abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J Biol Chem. 1999; 274(52): 37111-6[PubMed]
  • 27. Maurer I, Zierz S, Moller HJ. A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiol Aging. 2000; 21(3): 455-62[PubMed]
  • 28. Boll MC, Alcaraz-Zubeldia M, Montes S, Rios C. Free copper, ferroxidase and SOD1 activities, lipid peroxidation and NO(x) content in the CSF. A different marker profile in four neurodegenerative diseases. Neurochem Res. 2008; 33(9): 1717-23[DOI][PubMed]
  • 29. Connor JR, Tucker P, Johnson M, Snyder B. Ceruloplasmin levels in the human superior temporal gyrus in aging and Alzheimer's disease. Neurosci Lett. 1993; 159(1-2): 88-90[PubMed]
  • 30. Markesbery WR. Oxidative stress hypothesis in Alzheimer's disease. Free Radic Biol Med. 1997; 23(1): 134-47[PubMed]
  • 31. Multhaup G, Schlicksupp A, Hesse L, Beher D, Ruppert T, Masters CL, et al. The amyloid precursor protein of Alzheimer's disease in the reduction of copper(II) to copper(I). Science. 1996; 271(5254): 1406-9[PubMed]
  • 32. Ma Q, Li Y, Du J, Liu H, Kanazawa K, Nemoto T, et al. Copper binding properties of a tau peptide associated with Alzheimer's disease studied by CD, NMR, and MALDI-TOF MS. Peptides. 2006; 27(4): 841-9[DOI][PubMed]
  • 33. Cuajungco MP, Goldstein LE, Nunomura A, Smith MA, Lim JT, Atwood CS, et al. Evidence that the beta-amyloid plaques of Alzheimer's disease represent the redox-silencing and entombment of abeta by zinc. J Biol Chem. 2000; 275(26): 19439-42[DOI][PubMed]
  • 34. Butterfield DA, Castegna A, Lauderback CM, Drake J. Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer's disease brain contribute to neuronal death. Neurobiol Aging. 2002; 23(5): 655-64[PubMed]
  • 35. Pogocki D. Alzheimer's beta-amyloid peptide as a source of neurotoxic free radicals: the role of structural effects. Acta Neurobiol Exp (Wars). 2003; 63(2): 131-45[PubMed]
  • 36. Bush AI, Pettingell WH, Multhaup G, d Paradis M, Vonsattel JP, Gusella JF, et al. Rapid induction of Alzheimer A beta amyloid formation by zinc. Science. 1994; 265(5177): 1464-7[PubMed]
  • 37. Lim KH, Kim YK, Chang YT. Investigations of the molecular mechanism of metal-induced Abeta (1-40) amyloidogenesis. Biochemistry. 2007; 46(47): 13523-32[DOI][PubMed]
  • 38. Talmard C, Guilloreau L, Coppel Y, Mazarguil H, Faller P. Amyloid-beta peptide forms monomeric complexes with Cu(II) and Zn(II) prior to aggregation. Chembiochem. 2007; 8(2): 163-5[DOI][PubMed]
  • 39. Cuajungco MP, Faget KY. Zinc takes the center stage: its paradoxical role in Alzheimer's disease. Brain Res Brain Res Rev. 2003; 41(1): 44-56[PubMed]
  • 40. Khan A, Dobson JP, Exley C. Redox cycling of iron by Abeta42. Free Radic Biol Med. 2006; 40(4): 557-69[DOI][PubMed]
  • 41. Ruiperez F, Mujika JI, Ugalde JM, Exley C, Lopez X. Pro-oxidant activity of aluminum: promoting the Fenton reaction by reducing Fe(III) to Fe(II). J Inorg Biochem. 2012; 117: 118-23[DOI][PubMed]
  • 42. Exley C. The pro-oxidant activity of aluminum. Free Radic Biol Med. 2004; 36(3): 380-7[DOI][PubMed]
  • 43. Exley C. The coordination chemistry of aluminium in neurodegenerative disease. Coordina Chmst Rev. 2012; 256(19-20): 2142-6[DOI]
  • 44. Castellani RJ, Honda K, Zhu X, Cash AD, Nunomura A, Perry G, et al. Contribution of redox-active iron and copper to oxidative damage in Alzheimer disease. Ageing Res Rev. 2004; 3(3): 319-26[DOI][PubMed]
  • 45. Shibutani S, Takeshita M, Grollman AP. Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature. 1991; 349(6308): 431-4[DOI][PubMed]
  • 46. Halliwell B, Gutteridige JMC. Free radicals in biology and medicine. 1999;
  • 47. Kreutzer DA, Essigmann JM. Oxidized, deaminated cytosines are a source of C --> T transitions in vivo. Proc Natl Acad Sci U S A. 1998; 95(7): 3578-82[PubMed]
  • 48. Prakash VR, George P, Marcus SC, Lawrence MS, Mark AS. Mechanisms of DNA Damage and Repair in Alzheimer Disease;Madame Curie Bioscience Database [Internet]. 2000;
  • 49. Gajewski E, Rao G, Nackerdien Z, Dizdaroglu M. Modification of DNA bases in mammalian chromatin by radiation-generated free radicals. Biochemistry. 1990; 29(34): 7876-82[PubMed]
  • 50. Lyras L, Cairns NJ, Jenner A, Jenner P, Halliwell B. An assessment of oxidative damage to proteins, lipids, and DNA in brain from patients with Alzheimer's disease. J Neurochem. 1997; 68(5): 2061-9[PubMed]
  • 51. Gardner HW. Oxygen radical chemistry of polyunsaturated fatty acids. Free Radic Biol Med. 1989; 7(1): 65-86[PubMed]
  • 52. Marnett LJ. Lipid peroxidation-DNA damage by malondialdehyde. Mutat Res. 1999; 424(1-2): 83-95[PubMed]
  • 53. Marnett LJ. Oxyradicals and DNA damage. Carcinogenesis. 2000; 21(3): 361-70[PubMed]
  • 54. Chen JJ, Yu BP. Alterations in mitochondrial membrane fluidity by lipid peroxidation products. Free Radic Biol Med. 1994; 17(5): 411-8[PubMed]
  • 55. Stadtman ER. Role of oxidant species in aging. Curr Med Chem. 2004; 11(9): 1105-12[PubMed]
  • 56. Stadtman ER. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem. 1993; 62: 797-821[DOI][PubMed]
  • 57. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007; 39(1): 44-84[DOI][PubMed]
  • 58. Grillo MA, Colombatto S. Advanced glycation end-products (AGEs): involvement in aging and in neurodegenerative diseases. Amino Acids. 2008; 35(1): 29-36[DOI][PubMed]
  • 59. Takeuchi M, Kikuchi S, Sasaki N, Suzuki T, Watai T, Iwaki M, et al. Involvement of advanced glycation end-products (AGEs) in Alzheimer's disease. Curr Alzheimer Res. 2004; 1(1): 39-46[PubMed]
  • 60. Takeuchi M, Yanase Y, Matsuura N, Yamagishi Si S, Kameda Y, Bucala R, et al. Immunological detection of a novel advanced glycation end-product. Mol Med. 2001; 7(11): 783-91[PubMed]
  • 61. Thornalley PJ, Langborg A, Minhas HS. Formation of glyoxal, methylglyoxal and 3-deoxyglucosone in the glycation of proteins by glucose. Biochem J. 1999; 344 Pt 1: 109-16[PubMed]
  • 62. Miyata T, Horie K, Ueda Y, Fujita Y, Izuhara Y, Hirano H, et al. Advanced glycation and lipidoxidation of the peritoneal membrane: respective roles of serum and peritoneal fluid reactive carbonyl compounds. Kidney Int. 2000; 58(1): 425-35[DOI][PubMed]
  • 63. Basta G, Schmidt AM, De Caterina R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res. 2004; 63(4): 582-92[DOI][PubMed]
  • 64. Picklo MJ, Olson SJ, Markesbery WR, Montine TJ. Expression and activities of aldo-keto oxidoreductases in Alzheimer disease. J Neuropathol Exp Neurol. 2001; 60(7): 686-95[PubMed]
  • 65. Song J, Park KA, Lee WT, Lee JE. Apoptosis signal regulating kinase 1 (ASK1): potential as a therapeutic target for Alzheimer's disease. Int J Mol Sci. 2014; 15(2): 2119-29[DOI][PubMed]
  • 66. Matsuzawa A, Saegusa K, Noguchi T, Sadamitsu C, Nishitoh H, Nagai S, et al. ROS-dependent activation of the TRAF6-ASK1-p38 pathway is selectively required for TLR4-mediated innate immunity. Nat Immunol. 2005; 6(6): 587-92[DOI][PubMed]
  • 67. Schubert D. Glucose metabolism and Alzheimer's disease. Ageing Res Rev. 2005; 4(2): 240-57[DOI][PubMed]
  • 68. Jagust W, Gitcho A, Sun F, Kuczynski B, Mungas D, Haan M. Brain imaging evidence of preclinical Alzheimer's disease in normal aging. Ann Neurol. 2006; 59(4): 673-81[DOI][PubMed]
  • 69. Mosconi L, De Santi S, Li J, Tsui WH, Li Y, Boppana M, et al. Hippocampal hypometabolism predicts cognitive decline from normal aging. Neurobiol Aging. 2008; 29(5): 676-92[DOI][PubMed]
  • 70. Nordberg A, Rinne JO, Kadir A, Langstrom B. The use of PET in Alzheimer disease. Nat Rev Neurol. 2010; 6(2): 78-87[DOI][PubMed]
  • 71. Bevan P. Insulin signalling. J Cell Sci. 2001; 114: 1429-30[PubMed]
  • 72. Cohen E, Dillin A. The insulin paradox: aging, proteotoxicity and neurodegeneration. Nat Rev Neurosci. 2008; 9(10): 759-67[DOI][PubMed]
  • 73. Kadowaki H, Nishitoh H, Urano F, Sadamitsu C, Matsuzawa A, Takeda K, et al. Amyloid beta induces neuronal cell death through ROS-mediated ASK1 activation. Cell Death Differ. 2005; 12(1): 19-24[DOI][PubMed]
  • 74. Hsu MJ, Hsu CY, Chen BC, Chen MC, Ou G, Lin CH. Apoptosis signal-regulating kinase 1 in amyloid beta peptide-induced cerebral endothelial cell apoptosis. J Neurosci. 2007; 27(21): 5719-29[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments