Archives of Neuroscience

Published by: Kowsar

From Parallel Mathematical Description of Action to Unparalleled Outcome of Abstraction: A Comparative Analysis

Farshad Nemati 1 , *
Author Information
1 Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
Article information
  • Archives of Neuroscience: October 01, 2015, 2 (4); e22573
  • Published Online: October 3, 2015
  • Article Type: Discussion
  • Received: August 6, 2014
  • Revised: July 2, 2015
  • Accepted: July 7, 2015
  • DOI: 10.5812/archneurosci.22573

To Cite: Nemati F. From Parallel Mathematical Description of Action to Unparalleled Outcome of Abstraction: A Comparative Analysis, Arch Neurosci. 2015 ; 2(4):e22573. doi: 10.5812/archneurosci.22573.

Abstract
Copyright © 2015, Tehran University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Introduction
2. Arguments
3. Conclusions
References
  • 1. Piaget J. Psychology and Epistemology: Towards a theory of knowledge. 1971;
  • 2. Piaget J. The Psychology of Intelligence . 1950;
  • 3. Piaget J. Relations between psychology and other sciences. Annu Rev Psychol. 1979; 30: 1-8[DOI][PubMed]
  • 4. Darrigol O. The Genesis of the Theory of Relativity. 2006; 47[DOI]
  • 5. Poincaré H. Science and Hypothesis. 1952;
  • 6. Piaget J, Inhelder B. The psychology of the child. 1969;
  • 7. Pinter CH. A book of abstract algebra. 1982;
  • 8. Lockman JJ. The development of detour ability during infancy. Child Dev. 1984; 55(2): 482-91[PubMed]
  • 9. Chapuis N. Detour and Shortcut Abilities in Several Species of Mammals. 1987; [DOI]
  • 10. Chapuis N, Scardigli P. Shortcut ability in hamsters (Mesocricetus auratus): The role of environmental and kinesthetic information. Animal Learn Behav. 1993; 21(3): 255-65[DOI]
  • 11. Roberts WA, Cruz C, Tremblay J. Rats take correct novel routes and shortcuts in an enclosed maze. J Exp Psychol Anim Behav Process. 2007; 33(2): 79-91[DOI][PubMed]
  • 12. Mittelstaedt H, Mittelstaedt ML. Avian navigation. 1982;
  • 13. Wallace DG, Hines DJ, Whishaw IQ. Quantification of a single exploratory trip reveals hippocampal formation mediated dead reckoning. J Neurosci Meth. 2002; 113(2): 131-45[DOI]
  • 14. Nemati F, Whishaw IQ. The point of entry contributes to the organization of exploratory behavior of rats on an open field: an example of spontaneous episodic memory. Behav Brain Res. 2007; 182(1): 119-28[DOI][PubMed]
  • 15. Lima SL. Maximizing feeding efficiency and minimizing time exposed to predators: a trade-off in the black-capped chickadee. Oecologia. 1985; 66(1): 60-7[DOI]
  • 16. Lima SL, Valone TJ, Caraco T. Foraging-efficiency-predation-risk trade-off in the grey squirrel. Animal Behav. 1985; 33(1): 155-65[DOI]
  • 17. Whishaw IQ, Gharbawie OA, Clark BJ, Lehmann H. The exploratory behavior of rats in an open environment optimizes security. Behav Brain Res. 2006; 171(2): 230-9[DOI][PubMed]
  • 18. Hines DJ, Whishaw IQ. Home bases formed to visual cues but not to self-movement (dead reckoning) cues in exploring hippocampectomized rats. Eur J Neurosci. 2005; 22(9): 2363-75[DOI][PubMed]
  • 19. Whishaw IQ, Hines DJ, Wallace DG. Dead reckoning (path integration) requires the hippocampal formation: evidence from spontaneous exploration and spatial learning tasks in light (allothetic) and dark (idiothetic) tests. Behav Brain Res. 2001; 127(1-2): 49-69[DOI]
  • 20. Darwin C. Origin of Certain Instincts. Nature. 1873; 7(179): 417-8[DOI]
  • 21. Redish AD. Beyond the cognitive map: from place cells to episodic memory. 1999;
  • 22. McNaughton BL, Barnes CA, Gerrard JL, Gothard K, Jung MW, Knierim JJ, et al. Deciphering the hippocampal polyglot: the hippocampus as a path integration system. J Exp Biol. 1996; 199: 173-85[PubMed]
  • 23. Whishaw IQ, McKenna JE, Maaswinkel H. Hippocampal lesions and path integration. Curr Opin Neurobiol. 1997; 7(2): 228-34[DOI]
  • 24. Marcus GF. The algebraic mind: integrating connectionism and cognitive science. 2001;
  • 25. Gentner D. Language in mind: advances in the study of language and thought. 2003; : 195-235
  • 26. Urcelay GP, Miller RR. On the generality and limits of abstraction in rats and humans. Animal Cogn. 2010; 13(1): 21-32[DOI][PubMed]
  • 27. Watrous AJ, Lee DJ, Izadi A, Gurkoff GG, Shahlaie K, Ekstrom AD. A comparative study of human and rat hippocampal low-frequency oscillations during spatial navigation. Hippocampus. 2013; 23(8): 656-61[DOI][PubMed]
  • 28. Piaget J. Behavior and evolution. 1978;
  • 29. Meltzoff AN, Moore MK. OBJECT REPRESENTATION, IDENTITY, AND THE PARADOX OF EARLY PERMANENCE: Steps Toward a New Framework. Infant Behav Dev. 1998; 21(2): 201-35[DOI][PubMed]
  • 30. Meltzoff AN, Williamson RA, Marshall PJ. Action science: Foundations of an emerging discipline. 2013; : 280-306[DOI]
  • 31. Kuhn TS. Structure of Scientific Revolutions. 1962;
  • 32. Davis H. Transitive inference in rats (Rattus norvegicus). J Comp Psychol. 1992; 106(4): 342-9[PubMed]
  • 33. MacLean EL, Matthews LJ, Hare BA, Nunn CL, Anderson RC, Aureli F, et al. How does cognition evolve? Phylogenetic comparative psychology. Animal Cogn. 2012; 15(2): 223-38[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .
Readers' Comments