Archives of Neuroscience

Published by: Kowsar

Memory Encoding Processes in Young and Old Adults

Michael C. C. Kuo 1 , Karen P. Y. Liu 2 , * , Michelle Bissett 2 , Jacqueline Wesson 3 , 4 , Nikki Tulliani 2 , Rosalind BYE 2 and Leung-Wing Chu 5 , 6
Authors Information
1 Department of Applied Sciences, Hong Kong Institute of Vocational Education, Hong Kong, China
2 University of Western Sydney, Sydney, Australia
3 Ageing Work and Health Research Unit, University of Sydney, Sydney, Australia
4 Department of Aged Care Psychiatry, Prince of Wales Hospital, University of Sydney, Sydney, Australia
5 Department of Medicine, The University of Hong Kong, Hong Kong
6 Alzheimer’s Disease Research Network, The University of Hong Kong, Hong Kong
Article information
  • Archives of Neuroscience: January 01, 2015, 2 (1); e19813
  • Published Online: January 1, 2015
  • Article Type: Review Article
  • Received: March 1, 2014
  • Revised: March 15, 2014
  • Accepted: March 30, 2014
  • DOI: 10.5812/archneurosci.19813

To Cite: Kuo M C C, Liu K P Y, Bissett M, Wesson J, Tulliani N, et al. Memory Encoding Processes in Young and Old Adults, Arch Neurosci. 2015 ; 2(1):e19813. doi: 10.5812/archneurosci.19813.

Copyright © 2015, Tehran University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Context
2. Evidence Acquisition
3. Results
4. Conclusions
  • 1. Atkinson RC, Shiffrin RM. The Control of Short-Term Memory. SCI AM. 1971; 225(2): 82-90[DOI]
  • 2. Craik FI, Rose NS. Memory encoding and aging: a neurocognitive perspective. Neurosci Biobehav Rev. 2012; 36(7): 1729-39[DOI][PubMed]
  • 3. Baddeley AD, Eysenck MW, Anderson MC. Memory. 2009;
  • 4. Seifert T. Human learning and motivation: Readings. 1995;
  • 5. Craik FIM, Lockhart RS. Levels of processing: A framework for memory research. J VERB LEARN VERB BE. 1972; 11(6): 671-84[DOI]
  • 6. Wu JKY, Liu KPY, Chan CCH. Memory strategies used for recall task. Neurorehabil Neural Repair. 2006; 20: 91
  • 7. Kuo MC, Liu KP, Ting KH, Chan CC. Differentiation of perceptual and semantic subsequent memory effects using an orthographic paradigm. Brain Res. 2012; 1486: 82-91[DOI][PubMed]
  • 8. Chase WG, Simon HA. Visual information processing: proceedings. 1973;
  • 9. Kuo MC, Liu KP, Ting KH, Chan CC. Age-related effects on perceptual and semantic encoding in memory. Neuroscience. 2014; 261: 95-106[DOI][PubMed]
  • 10. Cansino S, Trejo-Morales P, Hernandez-Ramos E. Age-related changes in neural activity during source memory encoding in young, middle-aged and elderly adults. Neuropsychologia. 2010; 48(9): 2537-49[DOI][PubMed]
  • 11. Wagner AD, Koutstaal W, Schacter DL. When encoding yields remembering: insights from event-related neuroimaging. Philos Trans R Soc Lond B Biol Sci. 1999; 354(1387): 1307-24[DOI][PubMed]
  • 12. Cansino S, Trejo-Morales P. Neurophysiology of successful encoding and retrieval of source memory. Cogn Affect Behav Neurosci. 2008; 8(1): 85-98[PubMed]
  • 13. Compton PE, Grossenbacher P, Posner MI, Tucker DM. A cognitive-anatomical approach to attention in lexical access. J Cogn Neurosci. 1991; 3(4): 304-12[DOI][PubMed]
  • 14. Sereno SC, Rayner K, Posner MI. Establishing a time-line of word recognition: evidence from eye movements and event-related potentials. Neuroreport. 1998; 9(10): 2195-200[PubMed]
  • 15. Bridger EK, Wilding EL. Requirements at retrieval modulate subsequent memory effects: An event-related potential study. Cogn Neurosci. 2010; 1(4): 254-60[DOI][PubMed]
  • 16. Mangels JA, Picton TW, Craik FIM. Attention and successful episodic encoding: an event-related potential study. Cognitive Brain Research. 2001; 11(1): 77-95[DOI]
  • 17. Otten LJ, Sveen J, Quayle AH. Distinct patterns of neural activity during memory formation of nonwords versus words. J Cogn Neurosci. 2007; 19(11): 1776-89[DOI][PubMed]
  • 18. Posner MI, Rothbart MK. Attention, self-regulation and consciousness. Philos Trans R Soc Lond B Biol Sci. 1998; 353(1377): 1915-27[DOI][PubMed]
  • 19. Grunwald T, Lehnertz K, Heinze HJ, Helmstaedter C, Elger CE. Verbal novelty detection within the human hippocampus proper. Proc Natl Acad Sci U S A. 1998; 95(6): 3193-7[PubMed]
  • 20. Kutas M. Views on how the electrical activity that the brain generates reflects the functions of different language structures. Psychophysiology. 1997; 34(4): 383-98[PubMed]
  • 21. Donchin E, Coles MGH. Is the P300 component a manifestation of context updating? BEHAV BRAIN SCI. 2010; 11(3): 357[DOI]
  • 22. Picton TW. The P300 wave of the human event-related potential. J Clin Neurophysiol. 1992; 9(4): 456-79[PubMed]
  • 23. Kuo MCC. Factors involved in memory encoding and their implications for the memory performance of older adults and people with mild cognitive impairment. World J Neuro. 2012; 2(2): 103-12[DOI]
  • 24. Weyerts H, Tendolkar I, Smid HG, Heinze HJ. ERPs to encoding and recognition in two different inter-item association tasks. Neuroreport. 1997; 8(7): 1583-8[PubMed]
  • 25. Smith ME. Neurophysiological Manifestations of Recollective Experience during Recognition Memory Judgments. J Cogn Neurosci. 1993; 5(1): 1-13[DOI][PubMed]
  • 26. Tellez-Alanis B, Cansino S. Incidental and intentional encoding in young and elderly adults. NeuroReport. 2004; 15(11): 1819-23[DOI]
  • 27. Freunberger R, Klimesch W, Doppelmayr M, Holler Y. Visual P2 component is related to theta phase-locking. Neurosci Lett. 2007; 426(3): 181-6[DOI][PubMed]
  • 28. Kutas M, Federmeier KD. Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annu Rev Psychol. 2011; 62: 621-47[DOI][PubMed]
  • 29. Otten LJ, Rugg MD. Electrophysiological correlates of memory encoding are task-dependent. COGNITIVE BRAIN RES. 2001; 12(1): 11-8[DOI]
  • 30. Gutchess AH, Welsh RC, Hedden T, Bangert A, Minear M, Liu LL, et al. Aging and the neural correlates of successful picture encoding: frontal activations compensate for decreased medial-temporal activity. J Cogn Neurosci. 2005; 17(1): 84-96[DOI][PubMed]
  • 31. Morcom AM, Good CD, Frackowiak RS, Rugg MD. Age effects on the neural correlates of successful memory encoding. Brain. 2003; 126: 213-29[PubMed]
  • 32. Friedman D, Trott C. An event-related potential study of encoding in young and older adults. NEUROPSYCHOLOGIA. 2000; 38(5): 542-57[DOI]
  • 33. Friedman D, Ritter W, Snodgrass JG. ERPs during study as a function of subsequent direct and indirect memory testing in young and old adults. COGNITIVE BRAIN RES. 1996; 4: 1-13[DOI]
  • 34. Gutchess AH, Ieuji Y, Federmeier KD. Event-related potentials reveal age differences in the encoding and recognition of scenes. J Cogn Neurosci. 2007; 19(7): 1089-103[DOI][PubMed]
  • 35. Paivio A. Imagery and Verbal Processes. 1971;
  • 36. Mintzer MZ, Snodgrass JG. The Picture Superiority Effect: Support for the Distinctiveness Model. AM J PSYCHOL. 1999; 112(1): 113[DOI]
  • 37. Levie WH. The Psychology of Illustration: Volume 1 Basic Research. 1987; : 1-50
  • 38. Blaxton TA. Memory: Systems, Process, Or Function? 1999; : 104-29
  • 39. Cavina-Pratesi C, Kentridge RW, Heywood CA, Milner AD. Separate channels for processing form, texture, and color: evidence from FMRI adaptation and visual object agnosia. Cereb Cortex. 2010; 20(10): 2319-32[DOI][PubMed]
  • 40. Cavina-Pratesi C, Kentridge RW, Heywood CA, Milner AD. Separate processing of texture and form in the ventral stream: evidence from FMRI and visual agnosia. Cereb Cortex. 2010; 20(2): 433-46[DOI][PubMed]
  • 41. Wagner AD, Bunge SA, Badre D. Cognitive control, semantic memory, and priming: Contributions from prefrontal cortex. 2004;
  • 42. Honey GD, Fu CH, Kim J, Brammer MJ, Croudace TJ, Suckling J, et al. Effects of verbal working memory load on corticocortical connectivity modeled by path analysis of functional magnetic resonance imaging data. Neuroimage. 2002; 17(2): 573-82[PubMed]
  • 43. Owen AM. The functional organization of working memory processes within human lateral frontal cortex: the contribution of functional neuroimaging. Eur J Neurosci. 1997; 9(7): 1329-39[PubMed]
  • 44. Smith EE. Storage and Executive Processes in the Frontal Lobes. SCI. 1999; 283(5408): 1657-61[DOI]
  • 45. Smith EE, Jonides J, Marshuetz C, Koeppe RA. Components of verbal working memory: Evidence from neuroimaging. PNAS. 1998; 95(3): 876-82[DOI]
  • 46. Tulving E, Kapur S, Craik FI, Moscovitch M, Houle S. Hemispheric encoding/retrieval asymmetry in episodic memory: positron emission tomography findings. Proc Natl Acad Sci U S A. 1994; 91(6): 2016-20[PubMed]
  • 47. Prince SE, Tsukiura T, Cabeza R. Distinguishing the neural correlates of episodic memory encoding and semantic memory retrieval. Psychol Sci. 2007; 18(2): 144-51[DOI][PubMed]
  • 48. Martin A. Handbook of Functional Neuroimaging of Cognition. 2001; : 153-86
  • 49. Kane MJ, Engle RW. The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid inelligence: An individual-difference perspective. Psychonomic Bulletin & Review. 2002; 9: 637-71
  • 50. Curtis CE, D'Esposito M. Persistent activity in the prefrontal cortex during working memory. TRENDS COGN SCI. 2003; 7(9): 415-23[DOI]
  • 51. Postle BR. Working memory as an emergent property of the mind and brain. Neuroscience. 2006; 139(1): 23-38[DOI][PubMed]
  • 52. Summerfield C, Greene M, Wager T, Egner T, Hirsch J, Mangels J. Neocortical connectivity during episodic memory formation. PLoS Biol. 2006; 4(5)[DOI][PubMed]
  • 53. Tulving E. The Oxford Handbook of Memory. 2000; : 33-43
  • 54. Köhler S, Moscovitch M, Winocur G, Houle S, McIntosh AR. Networks of domain-specific and general regions involved in episodic memory for spatial location and object identity. NEUROPSYCHOLOGIA. 1998; 36(2): 129-42[DOI]
  • 55. Raz N, Lindenberger U, Rodrigue KM, Kennedy KM, Head D, Williamson A, et al. Regional brain changes in aging healthy adults: general trends, individual differences and modifiers. Cereb Cortex. 2005; 15(11): 1676-89[DOI][PubMed]
  • 56. Giorgio A, Santelli L, Tomassini V, Bosnell R, Smith S, De Stefano N, et al. Age-related changes in grey and white matter structure throughout adulthood. Neuroimage. 2010; 51(3): 943-51[DOI][PubMed]
  • 57. Grady CL, McIntosh AR, Horwitz B, Maisog JM, Ungerleider LG, Mentis MJ, et al. Age-related reductions in human recognition memory due to impaired encoding. Science. 1995; 269(5221): 218-21[PubMed]
  • 58. Anderson ND, Iidaka T, Cabeza R, Kapur S, McIntosh AR, Craik FI. The effects of divided attention on encoding- and retrieval-related brain activity: A PET study of younger and older adults. J Cogn Neurosci. 2000; 12(5): 775-92[PubMed]
  • 59. Buckner RL, Kelley WM, Petersen SE. Frontal cortex contributes to human memory formation. Nat Neurosci. 1999; 2(4): 311-4[DOI][PubMed]
  • 60. Kapur S, Craik FI, Tulving E, Wilson AA, Houle S, Brown GM. Neuroanatomical correlates of encoding in episodic memory: levels of processing effect. Proc Natl Acad Sci U S A. 1994; 91(6): 2008-11[PubMed]
  • 61. Stebbins GT, Carrillo MC, Dorfman J, Dirksen C, Desmond JE, Turner DA, et al. Aging effects on memory encoding in the frontal lobes. Psychol Aging. 2002; 17(1): 44-55[PubMed]
  • 62. Logan JM, Sanders AL, Snyder AZ, Morris JC, Buckner RL. Under-Recruitment and Nonselective Recruitment. Neuro. 2002; 33(5): 827-40[DOI]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments