Archives of Neuroscience

Published by: Kowsar

Nerve Injury-Induced Plasticity in the Nociceptive Pathways

Zahra Bahari 1 , Seyed Shahabeddin Sadr 2 , * , Gholam Hossein Meftahi 3 , Maedeh Ghasemi 4 , Homa Manaheji 1 , Alireza Mohammadi 3 and Nasrin Mehranfard 2
Authors Information
1 Department of Neurophysiology, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
2 Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, IR Iran
3 Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, IR Iran
4 Department of Physiology, Isfahan University of Medical Sciences, Isfahan, IR Iran
Article information
  • Archives of Neuroscience: April 01, 2015, 2 (2); e18214
  • Published Online: June 30, 2014
  • Article Type: Review Article
  • Received: February 23, 2014
  • Revised: June 8, 2014
  • DOI: 10.5812/archneurosci.18214

To Cite: Bahari Z, Sadr S S, Meftahi G H, Ghasemi M, Manaheji H, et al. Nerve Injury-Induced Plasticity in the Nociceptive Pathways, Arch Neurosci. 2015 ; 2(2):e18214. doi: 10.5812/archneurosci.18214.

Abstract
Copyright © 2014, Tehran University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Context
2. Evidence Acquisition
3. Results
4. Discussion
Acknowledgements
Footnotes
References
  • 1. von Hehn CA, Baron R, Woolf CJ. Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron. 2012; 73(4): 638-52[DOI][PubMed]
  • 2. Ji RR, Kohno T, Moore KA, Woolf CJ. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci. 2003; 26(12): 696-705[DOI][PubMed]
  • 3. Milligan ED, Watkins LR. Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci. 2009; 10(1): 23-36[DOI][PubMed]
  • 4. McCarberg BH, Billington R. Consequences of neuropathic pain: quality-of-life issues and associated costs. Am J Manag Care. 2006; 12(9 Suppl)-8[PubMed]
  • 5. Hulsebosch CE, Hains BC, Crown ED, Carlton SM. Mechanisms of chronic central neuropathic pain after spinal cord injury. Brain Res Rev. 2009; 60(1): 202-13[DOI][PubMed]
  • 6. Campbell JN, Meyer RA. Mechanisms of neuropathic pain. Neuron. 2006; 52(1): 77-92[DOI][PubMed]
  • 7. Amir R, Kocsis JD, Devor M. Multiple interacting sites of ectopic spike electrogenesis in primary sensory neurons. J Neurosci. 2005; 25(10): 2576-85[DOI][PubMed]
  • 8. Boucher TJ, Okuse K, Bennett DL, Munson JB, Wood JN, McMahon SB. Potent analgesic effects of GDNF in neuropathic pain states. Science. 2000; 290(5489): 124-7[PubMed]
  • 9. D'Mello R, Dickenson AH. Spinal cord mechanisms of pain. Br J Anaesth. 2008; 101(1): 8-16[DOI][PubMed]
  • 10. Burgess SE, Gardell LR, Ossipov MH, Malan TP, Jr, Vanderah TW, Lai J, et al. Time-dependent descending facilitation from the rostral ventromedial medulla maintains, but does not initiate, neuropathic pain. J Neurosci. 2002; 22(12): 5129-36[PubMed]
  • 11. Kovelowski CJ, Ossipov MH, Sun H, Lai J, Malan TP, Porreca F. Supraspinal cholecystokinin may drive tonic descending facilitation mechanisms to maintain neuropathic pain in the rat. Pain. 2000; 87(3): 265-73[PubMed]
  • 12. Vera-Portocarrero LP, Zhang ET, Ossipov MH, Xie JY, King T, Lai J, et al. Descending facilitation from the rostral ventromedial medulla maintains nerve injury-induced central sensitization. Neuroscience. 2006; 140(4): 1311-20[DOI][PubMed]
  • 13. Nickel FT, Seifert F, Lanz S, Maihofner C. Mechanisms of neuropathic pain. Eur Neuropsychopharmacol. 2012; 22(2): 81-91[DOI][PubMed]
  • 14. Sandkuhler J. Learning and memory in pain pathways. Pain. 2000; 88(2): 113-8[PubMed]
  • 15. Woolf CJ. Evidence for a central component of post-injury pain hypersensitivity. Nature. 1983; 306(5944): 686-8[PubMed]
  • 16. Sandkuhler J. Understanding LTP in pain pathways. Mol Pain. 2007; 3: 9[DOI][PubMed]
  • 17. Ikeda H, Kiritoshi T, Murase K. Synaptic plasticity in the spinal dorsal horn. Neurosci Res. 2009; 64(2): 133-6[DOI][PubMed]
  • 18. Rygh LJ, Tjolsen A, Hole K, Svendsen F. Cellular memory in spinal nociceptive circuitry. Scand J Psychol. 2002; 43(2): 153-9[PubMed]
  • 19. Bliss TV, Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973; 232(2): 331-56[PubMed]
  • 20. Pockett S. Long-term potentiation and depression in the intermediate gray matter of rat spinal cord in vitro. Neuroscience. 1995; 67(4): 791-8[PubMed]
  • 21. Randic M, Jiang MC, Cerne R. Long-term potentiation and long-term depression of primary afferent neurotransmission in the rat spinal cord. J Neurosci. 1993; 13(12): 5228-41[PubMed]
  • 22. Sandkuhler J, Liu X. Induction of long-term potentiation at spinal synapses by noxious stimulation or nerve injury. Eur J Neurosci. 1998; 10(7): 2476-80[PubMed]
  • 23. Mao J. Translational pain research: bridging the gap between basic and clinical research. Pain. 2002; 97(3): 183-7[PubMed]
  • 24. Svendsen F, Rygh LJ, Gjerstad J, Fiska A, Hole K, Tjolsen A. Recording of long-term potentiation in single dorsal horn neurons in vivo in the rat. Brain Res Brain Res Protoc. 1999; 4(2): 165-72[PubMed]
  • 25. Svendsen F, Hole K, Tjolsen A. Long-term potentiation in single wide dynamic range neurons induced by noxious stimulation in intact and spinalized rats. Prog Brain Res. 2000; 129: 153-61[DOI][PubMed]
  • 26. Ikeda H, Heinke B, Ruscheweyh R, Sandkuhler J. Synaptic plasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science. 2003; 299(5610): 1237-40[DOI][PubMed]
  • 27. Ikeda H, Stark J, Fischer H, Wagner M, Drdla R, Jager T, et al. Synaptic amplifier of inflammatory pain in the spinal dorsal horn. Science. 2006; 312(5780): 1659-62[DOI][PubMed]
  • 28. Wallin J, Fiska A, Tjolsen A, Linderoth B, Hole K. Spinal cord stimulation inhibits long-term potentiation of spinal wide dynamic range neurons. Brain Res. 2003; 973(1): 39-43[PubMed]
  • 29. Liu XG, Sandkuhler J. Long-term potentiation of C-fiber-evoked potentials in the rat spinal dorsal horn is prevented by spinal N-methyl-D-aspartic acid receptor blockage. Neurosci Lett. 1995; 191(1-2): 43-6[PubMed]
  • 30. Bailey CH, Kandel ER, Si K. The persistence of long-term memory: a molecular approach to self-sustaining changes in learning-induced synaptic growth. Neuron. 2004; 44(1): 49-57[DOI][PubMed]
  • 31. Pud D, Eisenberg E, Spitzer A, Adler R, Fried G, Yarnitsky D. The NMDA receptor antagonist amantadine reduces surgical neuropathic pain in cancer patients: a double blind, randomized, placebo controlled trial. Pain. 1998; 75(2-3): 349-54[PubMed]
  • 32. Sung B, Lim G, Mao J. Altered expression and uptake activity of spinal glutamate transporters after nerve injury contribute to the pathogenesis of neuropathic pain in rats. J Neurosci. 2003; 23(7): 2899-910[PubMed]
  • 33. Moore KA, Kohno T, Karchewski LA, Scholz J, Baba H, Woolf CJ. Partial peripheral nerve injury promotes a selective loss of GABAergic inhibition in the superficial dorsal horn of the spinal cord. J Neurosci. 2002; 22(15): 6724-31[PubMed]
  • 34. Coull JA, Boudreau D, Bachand K, Prescott SA, Nault F, Sik A, et al. Trans-synaptic shift in anion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature. 2003; 424(6951): 938-42[DOI][PubMed]
  • 35. Azkue JJ, Liu XG, Zimmermann M, Sandkuhler J. Induction of long-term potentiation of C fibre-evoked spinal field potentials requires recruitment of group I, but not group II/III metabotropic glutamate receptors. Pain. 2003; 106(3): 373-9[PubMed]
  • 36. Lieberman DN, Mody I. Substance P enhances NMDA channel function in hippocampal dentate gyrus granule cells. J Neurophysiol. 1998; 80(1): 113-9[PubMed]
  • 37. Zhang XC, Zhang YQ, Zhao ZQ. Involvement of nitric oxide in long-term potentiation of spinal nociceptive responses in rats. Neuroreport. 2005; 16(11): 1197-201[PubMed]
  • 38. Xin WJ, Gong QJ, Xu JT, Yang HW, Zang Y, Zhang T, et al. Role of phosphorylation of ERK in induction and maintenance of LTP of the C-fiber evoked field potentials in spinal dorsal horn. J Neurosci Res. 2006; 84(5): 934-43[DOI][PubMed]
  • 39. Yang HW, Hu XD, Zhang HM, Xin WJ, Li MT, Zhang T, et al. Roles of CaMKII, PKA, and PKC in the induction and maintenance of LTP of C-fiber-evoked field potentials in rat spinal dorsal horn. J Neurophysiol. 2004; 91(3): 1122-33[DOI][PubMed]
  • 40. Ikeda H, Murase K. Glial nitric oxide-mediated long-term presynaptic facilitation revealed by optical imaging in rat spinal dorsal horn. J Neurosci. 2004; 24(44): 9888-96[DOI][PubMed]
  • 41. Hu NW, Zhang HM, Hu XD, Li MT, Zhang T, Zhou LJ, et al. Protein synthesis inhibition blocks the late-phase LTP of C-fiber evoked field potentials in rat spinal dorsal horn. J Neurophysiol. 2003; 89(5): 2354-9[DOI][PubMed]
  • 42. Willis WD. Role of neurotransmitters in sensitization of pain responses. Ann N Y Acad Sci. 2001; 933: 142-56[PubMed]
  • 43. Fields RD. White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 2008; 31(7): 361-70[DOI][PubMed]
  • 44. Shibuki K, Gomi H, Chen L, Bao S, Kim JJ, Wakatsuki H, et al. Deficient cerebellar long-term depression, impaired eyeblink conditioning, and normal motor coordination in GFAP mutant mice. Neuron. 1996; 16(3): 587-99[PubMed]
  • 45. McCall MA, Gregg RG, Behringer RR, Brenner M, Delaney CL, Galbreath EJ, et al. Targeted deletion in astrocyte intermediate filament (Gfap) alters neuronal physiology. Proc Natl Acad Sci U S A. 1996; 93(13): 6361-6[PubMed]
  • 46. Hughes EG, Maguire JL, McMinn MT, Scholz RE, Sutherland ML. Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking. Brain Res Mol Brain Res. 2004; 124(2): 114-23[DOI][PubMed]
  • 47. Janus C, Janus M, Roder J. Spatial exploration in transgenic mice expressing human beta-S100. Neurobiol Learn Mem. 1995; 64(1): 58-67[DOI][PubMed]
  • 48. Roder JK, Roder JC, Gerlai R. Conspecific exploration in the T-maze: abnormalities in S100 beta transgenic mice. Physiol Behav. 1996; 60(1): 31-6[PubMed]
  • 49. Barger SW, Van Eldik LJ. S100 beta stimulates calcium fluxes in glial and neuronal cells. J Biol Chem. 1992; 267(14): 9689-94[PubMed]
  • 50. Roumier A, Pascual O, Bechade C, Wakselman S, Poncer JC, Real E, et al. Prenatal activation of microglia induces delayed impairment of glutamatergic synaptic function. PLoS One. 2008; 3(7)[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:

Author(s):

Article(s):

Create Citiation Alert
via Google Reader

Readers' Comments