Archives of Neuroscience

Published by: Kowsar

The Causal Interactions Between Bilateral M1 and SMA During Verb Comprehension, Motor Imagery and Hand Motion

Jie Yang 1 , * and Hua Shu 2
Authors Information
1 Department of Neurology, University of California Irvine, Irvine, USA
2 Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
Article information
  • Archives of Neuroscience: October 01, 2014, 1 (3); e18185
  • Published Online: October 1, 2014
  • Article Type: Research Article
  • Received: December 1, 2013
  • Revised: December 15, 2013
  • Accepted: December 16, 2013
  • DOI: 10.5812/archneurosci.18185

To Cite: Yang J, Shu H. The Causal Interactions Between Bilateral M1 and SMA During Verb Comprehension, Motor Imagery and Hand Motion, Arch Neurosci. 2014 ; 1(3):e18185. doi: 10.5812/archneurosci.18185.

Abstract
Copyright © 2014, Tehran University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
4.1 Behavioral Results
5. Discussion
Acknowledgements
Footnotes
References
  • 1. Meteyard L, Cuadrado SR, Bahrami B, Vigliocco G. Coming of age: a review of embodiment and the neuroscience of semantics. Cortex. 2012; 48(7): 788-804[DOI][PubMed]
  • 2. Glenberg AM, Robertson DA. Symbol Grounding and Meaning: A Comparison of High-Dimensional and Embodied Theories of Meaning. J Mem Lang. 2000; 43(3): 379-401[DOI]
  • 3. Kasess CH, Windischberger C, Cunnington R, Lanzenberger R, Pezawas L, Moser E. The suppressive influence of SMA on M1 in motor imagery revealed by fMRI and dynamic causal modeling. Neuroimage. 2008; 40(2): 828-37[DOI][PubMed]
  • 4. Zwaan RA. The immersed experiencer: Toward an embodied theory of language comprehension. Psychol Learn Motiv. 2004; 44: 35-62
  • 5. Gallese V, Lakoff G. The Brain's concepts: the role of the Sensory-motor system in conceptual knowledge. Cogn Neuropsychol. 2005; 22(3): 455-79[DOI][PubMed]
  • 6. Simmons WK, Barsalou LW. The similarity-in-topography principle: reconciling theories of conceptual deficits. Cogn Neuropsychol. 2003; 20(3): 451-86[DOI][PubMed]
  • 7. Vigliocco G, Vinson DP, Lewis W, Garrett MF. Representing the meanings of object and action words: the featural and unitary semantic space hypothesis. Cogn Psychol. 2004; 48(4): 422-88[DOI][PubMed]
  • 8. de Zubicaray G, Postle N, McMahon K, Meredith M, Ashton R. Mirror neurons, the representation of word meaning, and the foot of the third left frontal convolution. Brain Lang. 2010; 112(1): 77-84[DOI][PubMed]
  • 9. Fernandino L, Iacoboni M. Are cortical motor maps based on body parts or coordinated actions? Implications for embodied semantics. Brain Lang. 2010; 112(1): 44-53[DOI][PubMed]
  • 10. Hauk O, Johnsrude I, Pulvermuller F. Somatotopic representation of action words in human motor and premotor cortex. Neuron. 2004; 41(2): 301-7
  • 11. Kemmerer D, Castillo JG, Talavage T, Patterson S, Wiley C. Neuroanatomical distribution of five semantic components of verbs: evidence from fMRI. Brain Lang. 2008; 107(1): 16-43[DOI][PubMed]
  • 12. Postle N, McMahon KL, Ashton R, Meredith M, de Zubicaray GI. Action word meaning representations in cytoarchitectonically defined primary and premotor cortices. Neuroimage. 2008; 43(3): 634-44[DOI][PubMed]
  • 13. Pulvermuller F, Hauk O, Nikulin VV, Ilmoniemi RJ. Functional links between motor and language systems. Eur J Neurosci. 2005; 21(3): 793-7[DOI][PubMed]
  • 14. Willems RM, Hagoort P, Casasanto D. Body-specific representations of action verbs: neural evidence from right- and left-handers. Psychol Sci. 2010; 21(1): 67-74[DOI][PubMed]
  • 15. Friston KJ, Ungerleider LG, Jezzard P, Turner R. Characterizing modulatory interactions between areas V1 and V2 in human cortex: A new treatment of functional MRI data. Hum Brain Mapp. 1994; 2(4): 211-24
  • 16. Bollen KA. Structural Equations with Latent Variables. 1999;
  • 17. Chen G, Glen DR, Saad ZS, Paul Hamilton J, Thomason ME, Gotlib IH, et al. Vector autoregression, structural equation modeling, and their synthesis in neuroimaging data analysis. Comput Biol Med. 2011; 41(12): 1142-55[DOI][PubMed]
  • 18. Cooper RA, Boninger ML, Spaeth DM, Ding D, Guo S, Koontz AM, et al. Engineering better wheelchairs to enhance community participation. IEEE Trans Neural Syst Rehabil Eng. 2006; 14(4): 438-55[DOI][PubMed]
  • 19. Granger CWJ. Investigating causal relations by econometric models and cross-spectral methods. Econometrica. 1969; : 424-38
  • 20. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971; 9(1): 97-113[PubMed]
  • 21. Yang J, Shu H, Bi Y, Liu Y, Wang X. Dissociation and association of the embodied representation of tool-use verbs and hand verbs: An fMRI study. Brain Lang. 2011; 119(3): 167-74[DOI][PubMed]
  • 22. Sun HL, Huang JP, Sun DJ, Li DJ, Xing H. B. . Paper collection for the Fifth World Chinese Teaching Symposium. 1997; : 459-66
  • 23. Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res. 1996; 29(3): 162-73[PubMed]
  • 24. Talairach J, Tournoux P. Co-planar stereotaxic atlas of the human brain. 1988;
  • 25. Tanji J, Shima K. Role for supplementary motor area cells in planning several movements ahead. Nature. 1994; 371(6496): 413-6[DOI][PubMed]
  • 26. Roland PE, Larsen B, Lassen NA, Skinhoj E. Supplementary motor area and other cortical areas in organization of voluntary movements in man. J Neurophysiol. 1980; 43(1): 118-36[PubMed]
  • 27. Goldberg G. Supplementary motor area structure and function: review and hypotheses. Behav Brain Sci. 1985; 8(4): 567-88
  • 28. Picard N, Strick PL. Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex. 1996; 6(3): 342-53[PubMed]
  • 29. Tanji J. The supplementary motor area in the cerebral cortex. Neurosci Res. 1994; 19(3): 251-68[PubMed]
  • 30. Tanji J. Sequential organization of multiple movements: involvement of cortical motor areas. Annu Rev Neurosci. 2001; 24: 631-51[DOI][PubMed]
  • 31. Orgogozo JM, Larsen B. Activation of the supplementary motor area during voluntary movement in man suggests it works as a supramotor area. Science. 1979; 206(4420): 847-50[PubMed]
  • 32. Picard N, Strick PL. Activation of the supplementary motor area (SMA) during performance of visually guided movements. Cereb Cortex. 2003; 13(9): 977-86[PubMed]
  • 33. Solodkin A, Hlustik P, Chen EE, Small SL. Fine modulation in network activation during motor execution and motor imagery. Cereb Cortex. 2004; 14(11): 1246-55[DOI][PubMed]
  • 34. Muakkassa KF, Strick PL. Frontal lobe inputs to primate motor cortex: evidence for four somatotopically organized 'premotor' areas. Brain Res. 1979; 177(1): 176-82[PubMed]
  • 35. Pandya DN, Vignolo LA. Intra- and interhemispheric projections of the precentral, premotor and arcuate areas in the rhesus monkey. Brain Res. 1971; 26(2): 217-33[PubMed]
  • 36. Deecke L. Bereitschaftspotential as an indicator of movement preparation in supplementary motor area and motor cortex. Ciba Found Symp. 1987; 132: 231-50[PubMed]
  • 37. Solodkin A, Hlustik P, Noll DC, Small SL. Lateralization of motor circuits and handedness during finger movements. Eur J Neurol. 2001; 8(5): 425-34[PubMed]
  • 38. Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, et al. Network modelling methods for FMRI. Neuroimage. 2011; 54(2): 875-91[DOI][PubMed]
  • 39. Roebroeck A, Formisano E, Goebel R. Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage. 2005; 25(1): 230-42[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .
Readers' Comments