Archives of Neuroscience

Published by: Kowsar

Decreased Efferents of Mesencephalic Raphe Nuclei to Striatum in Animal Model of Streptozocin-Induced Diabetes

Gholamreza Hassanzadeh 1 , * , Rostam Ghorbani 2 , Tahmineh Mokhtari 1 , Mohamad Bayat 3 , Adib Zendedel 1 , Yosef Mohammadi 1 and Mitra Barzroodi
Authors Information
1 Department of Anatomy, Tehran University of Medical Sciences, Tehran, IR Iran
2 Department of Anatomy, Kermanshah University of Medical Sciences, Kermanshah, IR Iran
3 Department of Anatomy, Arak University of Medical Sciences, Arak, IR Iran
Article information
  • Archives of Neuroscience: July 01, 2014, 1 (2); 55-59
  • Published Online: July 1, 2014
  • Article Type: Research Article
  • Received: March 6, 2013
  • Revised: June 3, 2013
  • Accepted: September 14, 2013
  • DOI: 10.5812/archneurosci.11055

To Cite: Hassanzadeh G, Ghorbani R, Mokhtari T, Bayat M, Zendedel A, et al. Decreased Efferents of Mesencephalic Raphe Nuclei to Striatum in Animal Model of Streptozocin-Induced Diabetes, Arch Neurosci. 2014 ; 1(2):55-59. doi: 10.5812/archneurosci.11055.

Copyright © 2014, Tehran University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Objectives
3. Materials and Methods
4. Results
5. Discussion
  • 1. Hosseini A, Sharifzadeh M, Rezayat SM, Hassanzadeh G, Hassani S, Baeeri M, et al. Benefit of magnesium-25 carrying porphyrin-fullerene nanoparticles in experimental diabetic neuropathy. Int J Nanomedicine. 2010; 5: 517-23[PubMed]
  • 2. Gerozissis K. Brain insulin and feeding: a bi-directional communication. Eur J Pharmacol. 2004; 490(1-3): 59-70[DOI][PubMed]
  • 3. Abbate SL, Atkinson MB, Breuer AC. Amount and speed of fast axonal transport in diabetes. Diabetes. 1991; 40(1): 111-7[PubMed]
  • 4. Ceretta LB, Reus GZ, Rezin GT, Scaini G, Streck EL, Quevedo J. Brain energy metabolism parameters in an animal model of diabetes. Metab Brain Dis. 2010; 25(4): 391-6[DOI][PubMed]
  • 5. Cooray GK, Hyllienmark L, Brismar T. Decreased cortical connectivity and information flow in type 1 diabetes. Clin Neurophysiol. 2011; 122(10): 1943-50[DOI][PubMed]
  • 6. Jolivalt CG, Calcutt NA, Masliah E. Similar pattern of peripheral neuropathy in mouse models of type 1 diabetes and Alzheimer's disease. Neuroscience. 2012; 202: 405-12[DOI][PubMed]
  • 7. van Duinkerken E, Klein M, Schoonenboom NS, Hoogma RP, Moll AC, Snoek FJ, et al. Functional brain connectivity and neurocognitive functioning in patients with long-standing type 1 diabetes with and without microvascular complications: a magnetoencephalography study. Diabetes. 2009; 58(10): 2335-43[DOI][PubMed]
  • 8. Zsombok A, Smith BN. Plasticity of central autonomic neural circuits in diabetes. Biochim Biophys Acta. 2009; 1792(5): 423-31[DOI][PubMed]
  • 9. Hassanzadeh G, Zendedel A, Akbari M, Jemeie SB, Mehrannia K. Effect of diabetes on median and dorsal raphe nuclei efferent fibers to CA3 hippocampal area in rat. Acta Med Iran. 2010; 48(1): 1-8[PubMed]
  • 10. Ali S, Stone MA, Peters JL, Davies MJ, Khunti K. The prevalence of co-morbid depression in adults with Type 2 diabetes: a systematic review and meta-analysis. Diabet Med. 2006; 23(11): 1165-73[DOI][PubMed]
  • 11. Hosseini A, Abdollahi M, Hassanzadeh G, Rezayat M, Hassani S, Pourkhalili N, et al. Protective effect of magnesium-25 carrying porphyrin-fullerene nanoparticles on degeneration of dorsal root ganglion neurons and motor function in experimental diabetic neuropathy. Basic Clin Pharmacol Toxicol. 2011; 109(5): 381-6[DOI][PubMed]
  • 12. Baker KG, Halliday GM, Hornung JP, Geffen LB, Cotton RG, Tork I. Distribution, morphology and number of monoamine-synthesizing and substance P-containing neurons in the human dorsal raphe nucleus. Neuroscience. 1991; 42(3): 757-75[PubMed]
  • 13. Behzadi GR, Hassanzadeh G. Projections of dorsal and median raphe nuclei to dorsal and ventral striatum. Acta Med Iran. 2007; 45(5): 339-44
  • 14. Morin LP, Meyer-Bernstein EL. The ascending serotonergic system in the hamster: comparison with projections of the dorsal and median raphe nuclei. Neuroscience. 1999; 91(1): 81-105[PubMed]
  • 15. Waselus M, Valentino RJ, Van Bockstaele EJ. Collateralized dorsal raphe nucleus projections: a mechanism for the integration of diverse functions during stress. J Chem Neuroanat. 2011; 41(4): 266-80[DOI][PubMed]
  • 16. Gireesh G, Kumar TP, Mathew J, Paulose C. Enhanced muscarinic M1 receptor gene expression in the corpus striatum of streptozotocin-induced diabetic rats. J Biomed Sci. 2009; 16: 38[DOI][PubMed]
  • 17. Fibiger HC, Miller JJ. An anatomical and electrophysiological investigation of the serotonergic projection from the dorsal raphe nucleus to the substantia nigra in the rat. Neuroscience. 1977; 2(6): 975-87[DOI]
  • 18. Nabatame H, Nakamura K, Matsuda M, Fujimoto N, Shio H. Hemichorea in hyperglycemia associated with increased blood flow in the contralateral striatum and thalamus. Intern Med. 1994; 33(8): 472-5[PubMed]
  • 19. Reagan LP. Diabetes as a chronic metabolic stressor: causes, consequences and clinical complications. Exp Neurol. 2012; 233(1): 68-78[DOI][PubMed]
  • 20. Vertes RP. A PHA-L analysis of ascending projections of the dorsal raphe nucleus in the rat. J Comp Neurol. 1991; 313(4): 643-68[DOI][PubMed]
  • 21. Shpakov AO, Kuznetsova LA, Plesneva SA, Bondareva VM, Guryanov IA, Vlasov GP, et al. Decrease in functional activity of G-proteins hormone-sensitive adenylate cyclase signaling system, during experimental type II diabetes mellitus. Bull Exp Biol Med. 2006; 142(6): 685-9[PubMed]
  • 22. Broderick PA, Jacoby JH. Diabetes-related changes in L-tryptophan-induced release of striatal biogenic amines. Diabetes. 1988; 37(7): 956-60[PubMed]
  • 23. Broderick PA, Jacoby JH. Central monoamine dysfunction in diabetes: psychotherapeutic implications: electroanalysis by voltammetry. Acta Physiol Pharmacol Latinoam. 1989; 39(3): 211-25[PubMed]
  • 24. Tung CS, Guo YC, Lai CL, Liou LM. Irreversible striatal neuroimaging abnormalities secondary to prolonged, uncontrolled diabetes mellitus in the setting of progressive focal neurological symptoms. Neurol Sci. 2010; 31(1): 57-60[DOI][PubMed]
  • 25. Batterham RL, ffytche DH, Rosenthal JM, Zelaya FO, Barker GJ, Withers DJ, et al. PYY modulation of cortical and hypothalamic brain areas predicts feeding behaviour in humans. Nature. 2007; 450(7166): 106-9[DOI][PubMed]
  • 26. Chechlacz M, Rotshtein P, Klamer S, Porubska K, Higgs S, Booth D, et al. Diabetes dietary management alters responses to food pictures in brain regions associated with motivation and emotion: a functional magnetic resonance imaging study. Diabetologia. 2009; 52(3): 524-33[DOI][PubMed]
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments