Archives of Neuroscience

Published by: Kowsar

Preparation of Human Inner Ear Structures for High Resolution Imaging Studies

Marjan Mirsalehi 1 , 2 , Saleh Mohebbi 1 , 3 , Sedigheh Ebrahimpoor 1 , 4 , * , Mark Philip Kuhnel 5 , Thomas Lenarz 1 and Omid Majdani 1
Authors Information
1 Department of Otolaryngology, Hannover Medical School, Hannover, Germany
2 Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
3 Skull Base Research Center, Rasool Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
4 ENT and Head and Neck Research Center and Department, Hazrat Rasool Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
5 Institute of Pathology, Hannover Medical School, Hannover, Germany
Article information
  • Archives of Neuroscience: July 2017, 4 (3); e14491
  • Published Online: July 30, 2017
  • Article Type: Research Article
  • Received: June 3, 2017
  • Accepted: July 22, 2017
  • DOI: 10.5812/archneurosci.14491

To Cite: Mirsalehi M, Mohebbi S, Ebrahimpoor S, Kuhnel M P, Lenarz T, et al. Preparation of Human Inner Ear Structures for High Resolution Imaging Studies, Arch Neurosci. 2017 ; 4(3):e14491. doi: 10.5812/archneurosci.14491.

Copyright © 2017, Archives of Neuroscience. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Background
2. Methods
3. Results
5. Discussion
  • 1. De Seta D, Torres R, Russo FY, Ferrary E, Kazmitcheff G, Heymann D, et al. Damage to inner ear structure during cochlear implantation: Correlation between insertion force and radio-histological findings in temporal bone specimens. Hear Res. 2017; 344: 90-7[DOI][PubMed]
  • 2. Mirsalehi M, Rau TS, Harbach L, Hugl S, Mohebbi S, Lenarz T, et al. Insertion forces and intracochlear trauma in temporal bone specimens implanted with a straight atraumatic electrode array. Eur Arch Otorhinolaryngol. 2017; 274(5): 2131-40[DOI][PubMed]
  • 3. Rau TS, Wurfel W, Lenarz T, Majdani O. Three-dimensional histological specimen preparation for accurate imaging and spatial reconstruction of the middle and inner ear. Int J Comput Assist Radiol Surg. 2013; 8(4): 481-509[DOI][PubMed]
  • 4. Decraemer WF, Dirckx JJ, Funnell WR. Three-dimensional modelling of the middle-ear ossicular chain using a commercial high-resolution X-ray CT scanner. J Assoc Res Otolaryngol. 2003; 4(2): 250-63[DOI][PubMed]
  • 5. Pau HW, Lankenau E, Just T, Behrend D, Huttmann G. Optical coherence tomography as an orientation guide in cochlear implant surgery? Acta Otolaryngol. 2007; 127(9): 907-13[DOI][PubMed]
  • 6. Mohebbi S, Mirsalehi M, Kahrs LA, Ortmaier T, Lenarz T, Majdani O. Experimental Visualization of Labyrinthine Structure with Optical Coherence Tomography. Iran J Otorhinolaryngol. 2017; 29(90): 5-9[PubMed]
  • 7. Nolte L, Tinne N, Schulze J, Heinemann D, Antonopoulos GC, Meyer H, et al. Scanning laser optical tomography for in toto imaging of the murine cochlea. PLoS One. 2017; 12(4)[DOI][PubMed]
  • 8. Prasad P, Donoghue M. A comparative study of various decalcification techniques. Indian J Dent Res. 2013; 24(3): 302-8[DOI][PubMed]
  • 9. Arnold W. Immunohistochemical investigation of the human inner ear. Limitations and prospects. Acta Otolaryngol. 1988; 105(5-6): 392-7[DOI][PubMed]
  • 10. Callis G, Sterchi D. Decalcification of bone: Literature review and practical study of various decalcifying agents. Methods, and their effects on bone histology. J Histotechnol. 2013; 21(1): 49-58[DOI]
  • 11. Wong BJ, Zhao Y, Yamaguchi M, Nassif N, Chen Z, De Boer JF. Imaging the internal structure of the rat cochlea using optical coherence tomography at 0.827 microm and 1.3 microm. Otolaryngol Head Neck Surg. 2004; 130(3): 334-8[DOI][PubMed]
  • 12. Gao SS, Xia A, Yuan T, Raphael PD, Shelton RL, Applegate BE, et al. Quantitative imaging of cochlear soft tissues in wild-type and hearing-impaired transgenic mice by spectral domain optical coherence tomography. Opt Express. 2011; 19(16): 15415-28[DOI][PubMed]
  • 13. Tona Y, Sakamoto T, Nakagawa T, Adachi T, Taniguchi M, Torii H, et al. In vivo imaging of mouse cochlea by optical coherence tomography. Otol Neurotol. 2014; 35(2)-9[DOI][PubMed]
  • 14. Ramamoorthy S, Zhang Y, Petrie T, Fridberger A, Ren T, Wang R, et al. Minimally invasive surgical method to detect sound processing in the cochlear apex by optical coherence tomography. J Biomed Opt. 2016; 21(2): 25003[DOI][PubMed]
  • 15. Michaels L, Wells M, Frohlich A. A new technique for the study of temporal bone pathology. Clin Otolaryngol Allied Sci. 1983; 8(2): 77-85[PubMed]
  • 16. Mawhinney WH, Richardson E, Malcolm AJ. Control of rapid nitric acid decalcification. J Clin Pathol. 1984; 37(12): 1409-13[DOI][PubMed]
  • 17. Schuknecht H. Temporal bone removal at autopsy. Preparation and uses. Arch Otolaryngol. 1968; 87(2): 129-37[DOI][PubMed]
  • 18. Cunningham C3, Schulte BA, Bianchi LM, Weber PC, Schmiedt BN. Microwave decalcification of human temporal bones. Laryngoscope. 2001; 111(2): 278-82[DOI][PubMed]
  • 19. Keithley EM, Truong T, Chandronait B, Billings PB. Immunohistochemistry and microwave decalcification of human temporal bones. Hear Res. 2000; 148(1-2): 192-6[DOI][PubMed]
  • 20. Johnson SB, Cureoglu S, O'Malley JT, Santi PA. Comparison of traditional histology and TSLIM optical sectioning of human temporal bones. Otol Neurotol. 2014; 35(7): 1145-9[DOI][PubMed]
  • 21. Verdenius HH, Alma L. A quantitative study of decalcification methods in histology. J Clin Pathol. 1958; 11(3): 229-36[DOI][PubMed]
  • 22. Kapila SN, Natarajan S, Boaz K, Pandya JA, Yinti SR. Driving the Mineral out Faster: Simple Modifications of the Decalcification Technique. J Clin Diagn Res. 2015; 9(9)-7[DOI][PubMed]
  • 23. Madden VJ, Henson MM. Rapid decalcification of temporal bones with preservation of ultrastructure. Hear Res. 1997; 111(1-2): 76-84[DOI][PubMed]
  • 24. Mohebbi S, Diaz JD, Kühnel MP, Durisin M, Rau TS, Mirsalehi M, et al. Optical Coherence Tomography (OCT) guided inner ear decalcification, fast and safe method. Biomed Tech. 2014; 59
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .

Search Relations:



Create Citiation Alert
via Google Reader

Readers' Comments