Archives of Neuroscience

Published by: Kowsar

A Theoretical Framework to Explain the Superior Cognitive Competence in Humans: A Role for the Division of Labour in the Brain

Farshad Nemati 1 , *
Author Information
1 Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
Article information
  • Archives of Neuroscience: January 2017, 4 (1); e36107
  • Published Online: September 21, 2016
  • Article Type: Discussion
  • Received: January 9, 2016
  • Accepted: September 17, 2016
  • DOI: 10.5812/archneurosci.36107

To Cite: Nemati F. A Theoretical Framework to Explain the Superior Cognitive Competence in Humans: A Role for the Division of Labour in the Brain, Arch Neurosci. 2017 ; 4(1):e36107. doi: 10.5812/archneurosci.36107.

Abstract
Copyright © 2016, Tehran University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.
1. Introduction
2. Arguments
3. Conclusions
Footnote
References
  • 1. Rosati AG, Wobber V, Hughes K, Santos LR. Comparative developmental psychology: how is human cognitive development unique? Evolut Psychol. 2014; 12(2): 1.474704914012E+17
  • 2. Povinelli DJ. Behind the ape's appearance: Escaping anthropocentrism in the study of other minds. Daedalus. 2004; 133(1): 29-41
  • 3. Nemati F. From Parallel Mathematical Description of Action to Unparalleled Outcome of Abstraction: A Comparative Analysis. Arch Neur. 2015; 2(4)
  • 4. Kuhn TS. The structure of scientific revolutions. 2012;
  • 5. Penn DC, Holyoak KJ, Povinelli DJ. Darwin's mistake: explaining the discontinuity between human and nonhuman minds. Behav Brain Sci. 2008; 31(2): 109-30[DOI][PubMed]
  • 6. Piaget J. Biology and knowledge: An essay on the relations between organic regulations and cognitive processes. 1971;
  • 7. Nersessian NJ. Why do thought experiments work? Proceedings of the Cognitive Science Society. 1991;
  • 8. Pinter CC. A book of abstract algebra. 2012;
  • 9. Rotman JJ. Advanced modern algebra. 2010; 114
  • 10. Tolman EC. Cognitive maps in rats and men. Psychol Rev. 1948; 55(4): 189-208[PubMed]
  • 11. McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB. Path integration and the neural basis of the 'cognitive map'. Nat Rev Neurosci. 2006; 7(8): 663-78[DOI][PubMed]
  • 12. McNaughton BL, Barnes CA, Gerrard JL, Gothard K, Jung MW, Knierim JJ, et al. Deciphering the hippocampal polyglot: the hippocampus as a path integration system. J Exp Biol. 1996; 199: 173-85[PubMed]
  • 13. Sharp PE, Kubie JL, Muller RU. Firing properties of hippocampal neurons in a visually symmetrical environment: contributions of multiple sensory cues and mnemonic processes. J Neurosci. 1990; 10(9): 3093-105[PubMed]
  • 14. O'keefe J, Nadel L. The hippocampus as a cognitive map. 1978;
  • 15. Cartwright BA, Collett TS. Landmark learning in bees. J Compar Physiol. 1983; 151(4): 521-43
  • 16. Collett TS, Cartwright BA, Smith BA. Landmark learning and visuo-spatial memories in gerbils. J Comp Physiol A. 1986; 158(6): 835-51[PubMed]
  • 17. Hines DJ, Whishaw IQ. Home bases formed to visual cues but not to self-movement (dead reckoning) cues in exploring hippocampectomized rats. Eur J Neurosci. 2005; 22(9): 2363-75[DOI][PubMed]
  • 18. Nemati F, Whishaw IQ. The point of entry contributes to the organization of exploratory behavior of rats on an open field: an example of spontaneous episodic memory. Behav Brain Res. 2007; 182(1): 119-28[DOI][PubMed]
  • 19. Wang R, Spelke E. Human spatial representation: insights from animals. Trends Cogn Sci. 2002; 6(9): 376[PubMed]
  • 20. Redish AD. Beyond the cognitive map: from place cells to episodic memory. 1999;
  • 21. Sinnamon HM, Karvosky ME, Ilch CP. Locomotion and head scanning initiated by hypothalamic stimulation are inversely related. Behav Brain Res. 1999; 99(2): 219-29[PubMed]
  • 22. Schneider GE. Two visual systems. Science. 1969; 163(3870): 895-902[PubMed]
  • 23. Harting JK, Hall WC, Diamond IT, Martin GF. Anterograde degeneration study of the superior colliculus in Tupaia glis: evidence for a subdivision between superficial and deep layers. J Comp Neurol. 1973; 148(3): 361-86[DOI][PubMed]
  • 24. Wurtz RH, Albano JE. Visual-motor function of the primate superior colliculus. Annu Rev Neurosci. 1980; 3: 189-226[DOI][PubMed]
  • 25. Albano JE, Wurtz RH. Deficits in eye position following ablation of monkey superior colliculus, pretectum, and posterior-medial thalamus. J Neurophysiol. 1982; 48(2): 318-37
  • 26. Goodale MA, Foreman NP, Milner AD. Visual orientation in the rat: a dissociation of deficits following cortical and collicular lesions. Exp Brain Res. 1978; 31(3): 445-57[PubMed]
  • 27. Mlinar EJ, Goodale MA. Cortical and tectal control of visual orientation in the gerbil: evidence for parallel channels. Exp Brain Res. 1984; 55(1): 33-48[PubMed]
  • 28. O'Keefe J, Dostrovsky J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 1971; 34(1): 171-5[PubMed]
  • 29. Ranck Jr JB. Head-direction cells in the deep cell layers of dorsal presubiculum in freely moving rats. Soc Neurosci Abstr. 1984; 10(176.12)
  • 30. Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. Microstructure of a spatial map in the entorhinal cortex. Nature. 2005; 436(7052): 801-6[DOI][PubMed]
  • 31. Shrager Y, Kirwan CB, Squire LR. Neural basis of the cognitive map: path integration does not require hippocampus or entorhinal cortex. Proc Natl Acad Sci U S A. 2008; 105(33): 12034-8[DOI][PubMed]
  • 32. McCulloch WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. 1943. Bull Math Biol. 1990; 52(1-2): 99-115[PubMed]
  • 33. Piaget J. Behavior and evolution. 1978;
  • 34. Houde O, Tzourio-Mazoyer N. Neural foundations of logical and mathematical cognition. Nat Rev Neurosci. 2003; 4(6): 507-14[DOI][PubMed]
  • 35. Poucet B, Benhamou S. The neuropsychology of spatial cognition in the rat. Crit Rev Neurobiol. 1997; 11(2-3): 101-20[PubMed]
  • 36. Davis H. Transitive inference in rats (Rattus norvegicus). J Comp Psychol. 1992; 106(4): 342-9[PubMed]
  • 37. Collett TS, Collett M. Path integration in insects. Curr Opin Neurobiol. 2000; 10(6): 757-62
  • 38. Haun DB, Rapold CJ, Call J, Janzen G, Levinson SC. Cognitive cladistics and cultural override in Hominid spatial cognition. Proc Natl Acad Sci U S A. 2006; 103(46): 17568-73[DOI][PubMed]
  • 39. Gentner D. Spatial cognition in apes and humans. Trends Cogn Sci. 2007; 11(5): 192-4[DOI][PubMed]
  • 40. Friederici AD. Pathways to language: fiber tracts in the human brain. Trends Cogn Sci. 2009; 13(4): 175-81[DOI][PubMed]
  • 41. Debnath L. Srinivasa Ramanujan (1887-1920) and the theory of partitions of numbers and statistical mechanics a centennial tribute. Int J Mathematics Mathematic Sci. 1987; 10(4): 625-40
Creative Commons License Except where otherwise noted, this work is licensed under Creative Commons Attribution Non Commercial 4.0 International License .
Readers' Comments